Bounded Linear Operators on Quasi Normed Spaces
Helmi Firdaus(1*), Supama Supama(2)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDF FirdausReferences
Aoki, T., 1942, Locally Bounded Linear Topological Spaces, Proceedings of Imperial Academy Tokyo, 18, pp. 588-594.
Banach, S., 1932, Theorie des Operations Linearies, Chelsea, New York.
Hyers, D.H., 1939, Locally Bounded Linear Topological Spaces, Revista de Ciencias, 41, pp. 555-574.
Kalton, N., 2003, Quasi-Banach Spaces, Handbook of Geometry of Banach Spaces, 2, pp. 1101-1127.
Kalton, N., Peck, N., and Roberts, J., 1985, An F-Space Sampler, Cambridge University Press, Cambridge.
Kreyszig, E., 1979, Introductory Functional Analysis with Applications, John Wiley and Sons. Inc., Canada.
Litvak, Alexander E., 1998, The Extension of the Finite Dimensional Version of Krivine's Theorem to Quasi-Normed Spaces, Convex Geometric Analysis, 34, pp. 139-148.
Rano, G., 2017, Hahn Banach Extension Theorem in Quasi-Normed Linear Spaces, Advances in Fuzzy Mathematics, 12, pp. 825-833.
Rano, G., and Bag, T., 2014, Finite Dimensional Quasi-Normed linear space, The Journal of Fuzzy Mathematics, 22(2), pp. 669-676.
Rano, G., and Bag, T., 2015, Bounded Linear Operators in Quasi-Normed Linear Space, Journal of The Egyptian Mathematical society, 23, pp. 303-308.
Saphory, R.A., and Delfi, J.K., 2007, Quasi-Banach Space for the Sequence Space l^p where 0
DOI: https://doi.org/10.22146/jmt.55322
Article Metrics
Abstract views : 537 | views : 313Refbacks
- There are currently no refbacks.
Copyright of Jurnal Matematika Thales ISSN 2715-1891 (Print).
Jumlah Kunjungan: View My Stats
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.