Meningkatkan Ketahanan Wilayah Melalui Estimasi Underreported Data Kejahatan Menggunakan Pendekatan Bayes

https://doi.org/10.22146/jkn.29197

Herlin Venny Johannes(1*), Septiadi Padmadisastra(2), Bertho Tantular(3)

(1) Departemen Statistik, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjajaran
(2) Departemen Statistik, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjajaran
(3) Departemen Statistik, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjajaran
(*) Corresponding Author

Abstract


ABSTRACT

This paper present a study for the number of crime that run into underreporting counts. The purpose of the analysis is to estimate parameter of the model which is the actual number of crime. The model is a mixture of the poisson and the binomial distributions developed by Winkelmann (1996). The parameters of the model are estimated by Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. Determination the convergence of the algorithm using trace plot, autocorrelation plot and ergodic mean plot. In the end, estimator of the parameters of the underreported counts model are the simulation sample mean that calculated from the simulation sample of iteration after burn in period until the last iteration.

ABSTRAK

Penelitian ini mengkaji permodelan data tingkat kejahatan yang mengalami underreporting counts. Tujuan analisis ini adalah untuk menaksir parameter model yaitu banyaknya jumlah tindak kejahatan yang sebenarnya.  Model yang digunakan adalah hasil penggabungan antara distribusi poisson dan distribusi binomial yang dikembengkan oleh Winkelmann (1996). Penaksiran parameter model dilakukan melalui pendekatan bayes dan simulasi Markov Chain Monte Carlo menggunakan algoritma gibbs sampling. Penentuan konvergensi algoritma akan dilakukan melalui trace plot, autocorrelation plot, dan ergodic mean plot. Taksiran parameter model diperoleh dari rata-rata nilai sampel hasil simulasi yang dihitung dari iterasi setelah burn in period sampai dengan iterasi yang terakhir.


Keywords


Underreporting counts;Bayesian; MCMC; Gibbs sampling

Full Text:

PDF


References

Badan Pusat Statistik, 2016, ‘Statistik Kriminal 2016’, Jakarta: Badan Pusat Statistik.

BPS Kota Ambon, 2017, ‘Kota Ambon Dalam Angka 2017’, Ambon: Aman Jaya.

Bolstad, William M., 2007, ‘Introduction to Bayesian Statistics’, Second Edition, New Jersey: John Wiley & Son, Inc.

Bureau of Justice Statistics, U.S. Department of Justice, 2012, ‘Victimizations Not Reported to the Police’.

Draper, N., and Guttman, L (1971), "Bayesian Estimation of the Binomial Parameter," Technometrics, 13, 667-673.

Hoff, P.D. 2009. “A First Course in Bayesian Statistical Methods”, New York: Springer.

Lemhannas, 2000, “Ketahanan Nasional”, Jakarta:Balai Pustaka.

Moran, P. A. P., 1952, “A Characterization Property of the Poisson Distribution”. Proc. Camb. Phil. Soc. Math. Phys.48, 206-207.

Moreno, Elias & Javier Giron, 1998, ‘Estimating with Incomplete Count Data, A Bayesian Approach’. Journal of Statistical Planninng and Inference, vol.66, 147-159.

Morocoima-Black R., Chavarra S. and Lucas C., 2001, ‘ Selected Intersection Crash Analysis for 1993-1998. Champaign-Urban Urbanized Area Transportation Study (CUUATS)’, Champaign County Regional Planning Commission.

Mustafa, M., 2016, ‘Kajian Sosiologi terhadap Kriminalitas, Perilaku Menyimpang, dan Pelanggaran Hukum’. Sari Ilmu Pratama.

Neubauer Gerhard, 2011. “Models for Underreporting: A Bernaulli Sampling Approach for Underreported Counts”. Austrian Journal of Statistics, Vol. 40, Number 1 & 2, 85-92.

Ntzoufras, I. 2009. “Bayesian Modeling Using WinBUGS”. New Jersey: John Wiley & Sons, Inc

Padmadisastra S., J. Suprijadi, 2014, ‘Bayesian Underreported in Disease Mapping’, American Institute of Physics.

Papadatos, Nickos, 2005, ‘Characterizations of Discrete Distributions Using The Rao-Rubin Condition’. Journal of Statistical Planninng and Inference. Vol. 135, pp. 222-228.

Pararai, Marvis, 2010, ‘Generalized Poisson-Poisson Mixture Model for Misreported Counts with an Application to Smoking Data’. Journal of Data Science. Vol.8, pp. 607-617.

Pertiwi, R. 2012. Pemodelan Pengeluaran Per Kapita Per Kabupaten/Kota di Kalimantan Barat Menggunakan Metode Hirarki Bayesian. Tesis Institut Teknologi Sepuluh Nopember, Surabaya.

Polres Ambon, 2016, Laporan Bulanan Tindak Kejahatan. Ambon: Polres Ambon.

Rao Radhakrishna C., Herman Rubin, 1964, ‘On a Characterization of the Poisson Distribution’. The Indian Journal of Statistics, Vol. 26, No. 2/3, pp. 295-298.

Rian Marlina Reny. 2014. “Pendekatan Bayes Dalam Model Poisson Untuk Underreported Counts”. Tesis Universitas Padjajaran, Bandung.

Winkelmann, 1996. “Markov Chain Monte Carlo analysis of Underreported Count Data With an Application to Worker Absenteeism”. Empirical Economic 21: 575-587.



DOI: https://doi.org/10.22146/jkn.29197

Article Metrics

Abstract views : 2394 | views : 3636

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Herlin Venny Johannes, Septiadi Padmadisastra, Bertho Tantular

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


web
analytics View My Stats