Root Morphologycal Responses of Oil Palm (Elaeis guineensis Jacq.) Hybrids to Copper Toxicity

https://doi.org/10.22146/ipas.25903

Dwi Nur Shinta Febriani(1*), Eka Tarwaca Susila Putra(2), Tohari Tohari(3)

(1) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada
(2) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada
(3) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


The experiment aimed to identify the root response of eight  oil palm hybrids to copper toxicity. The factorial treatments were arranged in Randomized Completely Block Design with three blocks as replication. The first factor was the copper toxicity, while eight oil palm hybrids (DxP) consisted of Yangabi (P1), Avros (P2), Langkat (P3), PPKS 239 (P4), Simalungun (P5), PPKS 718 (P6), PPKS 540 (P7), and Dumpy (P8) as second factor. Root growth variables were observed, including total root length, total root area, root volume and diameter, copper content on root, fractal dimension, relative root water content, fresh root weight, and root dry weight. Data were analysed using analysis of variance (ANOVA) and continued with Duncan’s Multiple Range Test at α=5%. There was a declinning in total root length, volume and diameter, fresh and dry weight as the copper content rose on the root tissue, but no significant different was found in total root area.

Keywords


Copper Toxicity; Oil Palm; Root

Full Text:

PDF


References

Ambrosini, V. G., D. J. Rosa, J. P. C. Prado, M. Borghezan, G. W. B. de Melo, C. R. F. de Sousa, J. J. Comin, D. G. Simao, and G. B Runetto. 2015. Reduction of Copper Phytotoxicity by Liming: A Study of The Root Anatomy of Young Vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96: 270-280.

Andrade, S. A. L., P. L. Gratjo, R. A. Azevedo, A. P. D. Silveira, M. A. Schiavinato, and P. Mazzafera. 2010. Biochemical and Physiological Changes in Jack Bean under Mychorrhizal Symbiosis Growing in Soil with Increasing Cu Concentrations. Environment Experiment Botany, 68: 18-207.

Bernal, M., Roncel, M., Ortega, J. M., Picorel, R., and Yruela, I. 2004. Copper Effect on Cytochrome b559 of Photosystem II under Photoinhibitory Conditions. Physiol. Plant., 120: 686-694.

Broadley, M., P. Brown, I. Cakmak, Z. Rengel, and F. Zhao. 2012. Function of Nutrients : Micronutrients. In: P. Marschner, ed., Mineral Nutrition of Higher Plants, 3rd ed. Oxford: Academic Press, pp. 191-248.

Chen, P. Y., Y. I. Lee, B. C. Chen, and K. W. Juang. 2013. Effects of Calcium Oxalate on Rhizotoxicity and The Accumulation and Translocation of Copper Grapevines. Plant Physiology Biochemistry, 73: 375-382.

Clemens, S. 2001. Molecular Mechanisms of Plant Metal Tolerance and Homeostasis. Planta, 212: 475 – 486.

De Vos, C. H. R., H. Schat, M. A. M. De Waal, R. Vooijs, and W. H. O. Ernst. 1991. Increased Resistance to Copper-Induced Damage of Root Cell Plasmalemma in Copper Tolerance Silene cucubalus. Physiol Plant, 82: 523-528.

Del Rio, L. A., L. M Sandalio, F. J. Corpas, J. M. Palma, and J. B. Barosa. 2006. Reactive Oxygen Species and Reactive Nitrogen Species in Peroxisomes: Production, Scavenging and Role in Cell Signaling. Physiology Plant, 141 : 330-335.

Fidalgo, F., M. Azenha, A. F. Silva, A. de Sousa, A. Santiago, P. Ferraz, and J. Teixeira. 2013. Copper-Induced Stress in Solanum nigrum L. and Antioxidant Defense System Responses. Food and Energy Security, 2(1): 70-80.

Gadallah, M. A. A., and A. E. El-Enany. 1999. Role of Kinetin in Alleviation of Copper and Zinc Toxicity in Lupinus termis Plants. Plant Growth Regulation, 29: 151-160.

Gardner, F. P., Pearce, R. B. and Mitchell, R. L. 1985. Physiology of crop plants. The IOWA State: University Press.

Juang, K. W., Y. I. Lee, H. Y. Lai, and B. O. Chen. 2014. Influence of Magnesium on Copper Phytotoxicity to and Accumulation and Translocation in Gapevines. Ecotoxicology Environmental Safe, 104: 36-42.

Kabala, K., M. Janicka-Russak, M. Burzynski, and G. Klobus. 2008. Comparisson of Heavy Metal Effect on The Proton Pumps of Plasma Membrane and Tonoplast in Cucumber Root Cells. Journal Plant Physiology, 165: 278-288.

Lequeux, H., C. Lutts, and N. Verbruggen. 2010. Response to Copper Excess in Arabidopsis Thaliana: Impact on The Root System Architecture, Hormone Distribution, Lignin Accumulation, and Mineral Profile. Plant Physiology Biochemistry, 48: 673-682.

Lin, C. C., L. M. Chen and Z. H. Liu. 2005. Rapid Effect of Copper on Lignin Biosynthesis in Soybean Roots. Plant Science, 168: 855-861.

Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. London: Academic Press.

Miotto, A., C. A. Cereta, G. Bruneto, F. T. Nicoloso, E. Giroto, and J. G. Farias. 2014. Copper Uptake: Accumulation and Physiological Changes in Adult Grapevines in Responses to Excess Copper in Soil. Plant Soil, 374: 593-610.

Mocquot, B., J. Vangronsveld, H. Clijsters, and M. Mench. 1996. Copper Toxicity in Young Maize (Zea mays L.) Plants: Effect on Growth, Mineral and Chlorophyll Contents and Enzyme Activities. Plant and Soil, 182: 287-300.

Nair, P. G. and I. Chung. 2014. A Mechanistic Study on The Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells. Biol Trace Element Res, 162: 342-352.

Navari-Izzo, F., B. Gestone, A. Cavallini, L. Natali, T. Giordani, and M. F. Quartacci. 2006. Copper Excess Triggers Phospholipase D Activity in Wheat Roots. Phytochemistry, 67: 1232-1242.

Pilon, M., S. E. Abdel-Ghany, C. M. Cohu, K. A. Gogolin, and H. Ye. 2006. Copper Cofactor Delivery in Plant Cells. Curr Opin Plant Biology, 9: 256-263.

Ritter, A., S. Goulitquer, J. P. Salaun, T. Tonon, J. A. Correa, and P. Potin. 2008. Copper Stress Induces Biosynthesis of Octadecanoid and Eicosanoid Oxygenated Derivative in The Brown Agal Kelp Laminaria digitata. New Phytol, 180: 809-821.

Sheldon, A. and N. W. Menzies. 2004. The Effect of Copper Toxicity on The Growth of Rhodes Grass (Chloris gayana) in Solution Culture. Paper presented to SuperSoil 3rd Australian New Zealand Soils Conference, University of Sydney, Australia, 5–9 December.

Vellosillo, T., M. Martinez, M. A. Lopez, J. Vicente, T. Cascon, L. Dolan, M. Hamberg and C. Castresana. 2007. Oxylipins Produced by The 9-lypoxygenase Pathway in Arabidopsis Regulate Lateral Root Development and Defense Response Through A Specific Signaling Cascade. Plant Cell, 19: 831–846.

Yruela, I. 2005. Copper in Plants. Braz. J. Plant. Physiol, 17(1): 145-156.

Yruela, I. 2009. Copper in Plants: Acquisition, Transport and Interactions. Funct Plant Biol., 36: 409–430.



DOI: https://doi.org/10.22146/ipas.25903

Article Metrics

Abstract views : 2602 | views : 2461

Refbacks

  • There are currently no refbacks.





Ilmu Pertanian (Agricultural Science) ISSN 0126-4214 (print), ISSN 2527-7162 (online) is published by Faculty of Agriculture Universitas Gadjah Mada collaboration with Perhimpunan Sarjana Pertanian Indonesia (PISPI) and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

web
analytics View My Stats