Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika

https://doi.org/10.22146/jik.57479

Lisna Efiyanti(1*), Suci Aprianty Wati(2), Mamay Maslahat(3)

(1) Pusat Penelitian dan Pengembangan Hasil Hutan, Jl. Gunung Batu No. 5 Bogor, Jawa Barat
(2) Pusat Penelitian dan Pengembangan Hasil Hutan, Jl. Gunung Batu No. 5 Bogor, Jawa Barat
(3) Universitas Nusa Bangsa, Jl Cibadak, Tanah Sareal, Bogor, Jawa Barat
(*) Corresponding Author

Abstract


Penggunaan karbon aktif di Indonesia semakin meluas sejalan dengan meningkatnya kebutuhan tehadap karbon aktif tersebut, sehingga perlu terus diupayakan pencarian bahan baku dan metode pembuatan karbon aktif untuk menghasilkan karbon aktif yang berkualitas. Salah satu bahan baku yang dapat digunakan untuk menghasilkan karbon aktif adalah cangkang buah karet karena keberadaannya tidak termanfaatkan dengan baik. Pada penelitian ini dilakukan pembuatan karbon aktif dari cangkang buah karet masing-masing dengan metode aktivasi steam pada suhu 650°C, aktivasi dengan kalium hidroksida 10% dan aktivasi dengan asam fosfat 10%. Karbon aktif yang terbentuk kemudian dianalisa menggunakan metode SNI 06-3730-1995 dengan parameter kadar air, kadar abu, kadar zat terbang, kadar karbon terikat, daya jerap iod, daya jerap biru metilen dan daya jerap benzena. Gugus fungsi, kristalinitas dan morfologi karbon aktif dianalisa masing-masing menggunakan FTIR, XRD dan SEM. Hasil penelitian menunjukkan bahwa nilai kadar air, kadar abu, kadar zat terbang, kadar karbon terikat, daya jerap iod, daya jerap biru metilen dan daya jerap benzena masing-masing sebesar 1,83-3,74%; 2,86-8,14; 7,36-13,55; 82,8-89,78%; 355,21-569,39 mg/g; 10,34-17,61 mg/g; 8,09-19,26%. Hasil FTIR menunjukkan bahwa gugus fungsi yang terdeteksi pada karbon aktif adalah gugus OH, CH alifatik, CH aromatik, C=O, C-C, C=C dan C-O, sedangkan kristalinitas karbon aktif berkisar antara 11,34-30,78% dengan ukuran pori sebesar 5-9 μm. Karbon aktif dengan aktivator KOH dapat menjerap senyawa iod dan metilen biru lebih baik sedangkan karbon aktif aktivasi steam memiliki daya jerap terbaik pada adsorpsi senyawa benzena.

 

Manufacture and Analysis of Activated Carbon from Rubber Fruit Shell with Chemical and Physical Processing

Abstract

 

The utilization of activated carbon in Indonesia is increased, which is in line with the increase of activated carbon needs, therefore it is necessary to search the raw materials and methods continuously for good quality activated carbon. One of the raw materials that can be used to produce activated carbon is a rubber fruit shell because it is not properly utilized. In this research, activated carbon was made from rubber fruit shells by the steam activation method at a temperature of 650°C, 10% potassium hydroxide, and 10% phosphoric acid activation. The activated carbon was then analyzed using SNI 06-3730-1995 methods with parameters of water content, ash content, volatile matter content, fixed carbon content, iod adsorption, methylene blue adsorption, and benzene adsorption. The functional groups, crystallinity, and morphology of activated carbon also analyzed using FTIR, XRD, and SEM respectively. The results shows that the water content, ash content, volatile matter content, fixed carbon content, iod adsorption, methylene blue adsorption, and benzene adsorption are 1,83-3,74%; 2,86-8,14; 7,36-13,55; 82,8-89,78%; 355,21-569,39 mg/g; 10,34-17,61 mg/g; 8,09-19,26%, respectively. The FTIR results from activated carbon are contain of several functional groups, like OH; CH aliphatic, CH aromatic, C=O; C-C; C=C and C-O, meanwhile the degree of crystallinity from activated carbon formed are ranged 11,34-30,78% with 5-9 μm of pore size. The activated carbon with KOH activator has good adsorption in iod and methylene blue compound meanwhile activated carbon from steam activation can be a good adsorbent on the benzene compound.


Keywords


activated carbon; adsorption; activation; rubber fruit shell

Full Text:

PDF


References

Abdel-Ghani NT, El-Chaghaby GA, Rawash ESA, Lima EC. Magnetic activated carbon nanocomposite from Nigella sativa L. waste(MNSA) for the removal of Coomassie brilliant blue dye from aqueous solution: Statistical design of experiments for optimization of the adsorption conditions. Journal of Advanced Research 17: 55–63. doi:org/10.1016/j.jare.2018.12.004

Ahmad AL, Loh MM, Aziz JA. 2007. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and Pigments 7: 263-272. doi:10.1016/j. dyepig.2006.05.034

Ahmad MA, Puad NAA, Bello OS. 2014. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resources and Industry 6: 18–35. doi:org/10.1016/j. wri.2014.06.002

Auta M, Hameed BH. 2011. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chemical Engineering Journal 175: 233– 243. doi:10.1016/j.cej.2011.09.100

Bangun TA, Zaharah TA, Shofiyani A. 2016. Pembuatan arang aktif dari cangkang buah karet untuk adsorpsi ion besi (Ii) dalam larutan. Jurnal Kimia Khatulistiwa, 5(3): 18-24.

Bansal RC, Goyal M. 2005. Activated carbon adsorption. Taylor and Francis Group. Belhamdi B, Merzougui Z, Laksaci H, Trari M. 2019. The removal and adsorption mechanisms of free amino acid l-tryptophan from aqueous solution by biomassbased activated carbon by H3PO4 activation: Regeneration study. Physics and Chemistry of the Earth. doi:10.1016/j.pce.2019.07.004

Carrari E, Ampoorter E, Bussotti F, Coppi A, Nogales AG, Pollastrini M, Verheyen K, Selvi F. 2018. Effects of charcoal hearth soil on forest regeneration: Evidence from a two-year experiment on tree seedlings. Forest Ecology and Management 427: 37–44.doi:org/10.1016/j. foreco.2018.05.038

Danish M, Ahmad T. 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 1–21. doi:10.1016/j. rser.2018.02.003

Darmawan S , Syafii W, Wistara NJ, Maddu A, Pari G. 2015. Kajian struktur arang-pirolisis, arang-hidro dan karbon aktif dari kayu Acacia mangium Willd menggunakan difraksi sinar X. Jurnal Penelitian Hasil Hutan 33(2): 81-92

Desi, SukaryawanM,Suharma A. 2019. Utilization of Rubber Fruit Shells as Activated Carbon for Color Waste Management of Palembang Songket Crafts. Proceeding of the International Conference on SMART CITY Innovation 2018. IOP Conference Series: Earth and Environmental Science 248.doi:10.1088/1755- 1315/248/1/012035

Doke KM, Khan EM. 2017. Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell. Arabian Journal of Chemistry10: 252–260. doi:org/10.1016/j. arabjc.2012.07.031

Elaiyappillai E, Srinivasan R, Johnbosco Y, Devakumar P, Murugesan K, Kesavan K, Johnson PM. 2019. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science 486:527–538. doi:org/10.1016/j.apsusc.2019.05.004

Foo KY, Hameed BH. 2012. Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous and Mesoporous Materials 148: 191–1. doi:10.1016/j.micromeso.2011.08.005

González-García P. 2018. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews 82: 1393–1414. doi:org/10.1016/j. rser.2017.04.117.

HuiTS, ZainiMAA. 2015.Potassium hydroxide activation of activated carbon: a commentary. Carbon Letters1 6(4):275-280. doi:10.5714/CL.2015.16.4.275

Ibeh PO, García-Mateos FJ, Rosas JM, Rodríguez-Mirasol J, Cordero T. 2019. Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. Journal of the Taiwan Institute of Chemical Engineers 97:480-488. doi:org/10.1016/j. jtice.2019.02.019

Im US, Kim J, Lee SH, Lee SM, Lee BR,Peck DH, Jung DH. 2018. Preparation of activated carbon from needle coke via two-stage steam activation Process. Materials Letters 237: 22-25. doi:10.1016/j.matlet.2018.09.171

Inbaraj BS, Sulochana N. 2006. Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials B133: 283– 290. doi:10.1016/j.jhazmat.2005.10.025

Jaria G, Calisto V, Silva CP, Gil MV, OteroM, Esteves VI. 2019. Obtaining granular activated carbon from paper mill sludge – A challenge for application in the removal of pharmaceuticals from waste water. Science of the Total Environment 653: 393–400.doi:org/10.1016/j.scitotenv.2018.10.346

Juwita AI, Ahmad I, Bujawati E, Basri S. 2018. Efektifitas penggunaan arang limbah Kulit Kakao (Theobroma cacao L .) untuk menurunkan kesadahan , salinitas dan senyawa organik air. Higiene 4(1).

Kan Y, Yue Q, Gao B, Li Q. Preparation of epoxy resin-based activated carbons from waste printed circuit boards by steam activation. Materials Letters 159: 443-446. doi. org/10.1016/j.matlet.2015.07.053

Kemenperin1.2017.Imporkarbonaktif.https://kemenperin.go.id/statistik/query_komoditi.php?komoditi=activated+ carbon&negara=&jenis= i&action =Tampilkan. Diakses September 2019.

Kemenperin1. 2017. Ekspor karbon aktif https://kemenperin.go.id/statistik/query_komoditi.php? komoditi= activated+carbon&negara=&jenis=e& action= Tampilkan. Diakses September 2019.

Kemenperin3. 2017. Impor karet https://kemenperin. go.id/statistik/query_komoditi.php?komoditi= rubber+latex&negara= &jenis= i&action=Tampilkan. Diakses September 2019.

Khan EA , Shahjahan , Khan TA. 2018. Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies. Journal of Molecular Liquids 249:1195–1211. doi:org/10.1016/j.molliq.2017.11.125

Kumar V, Tyagi PK. 2018. Potential application of multiwalled carbon nanotubes/activated carbon/bamboo charcoal for efficient alcohol sensing. Journal of Alloys and Compounds 767: 215-222. doi: 10.1016/j. jallcom.2018.06.123.

KumarVB, Pulidindi IN, Gedanken A.2015. Selective conversion of starch to glucose using carbon based solid acid Catalyst. Renewable Energy 78:141-145. doi: 10.1016/j.renene.2014.12.070

Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, Ng JH, Lam WH, Chong CT, Chase HA. 2018. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. Journal of Environmental Management 213: 400-408. doi. org/10.1016/j.jenvman.2018.02.092

Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, Jusoh A, Lam WH, Ibrahim MD,Ma NL, Lam SS. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micromesoporous activated carbon for textile dye adsorption. Bioresource Technology 266: 1-10. doi: org/10.1016/j.biortech.2018.06.051

Li MS, Wu SC, Peng YH, Shih YH. 2016. Adsorption of volatile organic vapors by activated carbon derived from rice husk under various humidity conditions and its statistical evaluation by linear solvation energy relationships. Separation and Purification Technology 170: 102–108. doi:10.1016/j.seppur.2016.06.029

Li L, Sun Z, Li H, Keener TC. 2012. Effects of activated carbon surface properties on the adsorption of volatile organic compounds. Journal of the Air& Waste Management Association 62(10), 1196-1202.doi: 10.1080/10962247.2012.70063:

Marzbali MH, Esmaieli M, Abolghasemi H, Marzbali, MH, 2016. Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Safety and Environment Protection 102: 700-709.doi:org/10.1016/j.psep.2016.05.025

Meilianti. 2017. Karakteristik karbon aktif dari cangkang buah karet menggunakan aktivator H3PO4. Distilasi 2(2):1-9

Mohammed J, Nasri NS, Zaini MAA, Hamza UD, Ani FN. Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3. International Biodeterioration & Biodegradation 102: 245-255. doi:org/10.1016/j.ibiod.2015.02.012

Oginni O, Singh K, Oporto G, Dawson-Andoha B,McDonald L, Sabolsky E. 2019. Influence of one-step and two-step KOH activation on activated carbon Characteristics. Bioresource Technology Reports 7: 1-10. doi:10.1016/j. biteb.2019.100266

Oh GH, Yun CH, Park CR. 2003. Role of KOH in the One- Stage KOH Activation of Cellulosic Biomass. Carbon Science 4(4): 180-184

Pari G, Buchari, Sulaeman A. 1996. Pembuatan dan kualitas arang aktif dari kayu sengon {Paraserianthes falcataria) sebagai bahan adsorben. Buletin Penelitian Hasil Hutan 14(7): 274 - 289

Peng X, Shen S, Wang C, Li T, Li Y, Yuan S, Wen X. 2017. Influence of relative proportions of cellulose and lignin on carbon-based solid acid for cellulose hydrolysis. Molecular Catalysis 442: 133–139. doi:10.1016/j. mcat.2017.09.012

Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. 2013. Influence of chemicalc of Eucalyptus wood on gravimetric yield and charcoal properties. Wood chemistry & charcoal, BioResources 8(3): 4574-4592. https://doi. org/10.15376/biores.8.3.4574-4592

Poletto M, Zattera AD, Forte MMC, Santana RMC. 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148–153. https://doi.org/ 10.1016/j. biortech.2011.11.122

Pophali A, Lee KM, Zhang L, Chuang YC, Ehm L, Cuiffo MA, Halada GP, Rafailovich M, Verma N,Kim T.. 2019. First synthesis of poly(furfuryl) alcohol precursor-based porous carbon beads as an efficient adsorbent for volatile organic compounds. Chemical Engineering Journal 373: 365–374. doi:10.1016/j.cej.2019.05.029

Prahas D, Kartika Y, Indraswati N, Ismadji S. 2008. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal 140: 32–42. doi:10.1016/j.cej.2007.08.032

Rai MK, Shahi G, Meena V, Meena R, Chakraborty S, Singh RS, Rai BN. 2016. Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies 2: S63–S70

Ramayana, D, Royani, I, Arsyad, FS. Pembuatan carbon black berbasis nanoserbuk tempurung biji karet menggunakan high energy milling. Jurnal MIPA 40 (1): 28-32

Rattanapan S, Srikram, J, Kongsune P. 2017. Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia 138: 949-954. doi:10.1016/j. egypro.2017.10.064

Rosalina T, Tedja E, Riani, Sugiarti S. 2016. Pengaruh aktivasi fisika dan kimia arang aktif buah bintaro terhadap daya jerap logam berat krom. Jurnal Bioteknologi Proses Pangan dan Lingkungan Industri 7 (1): 35-45

Salleh Z, Islam MM, Yusop MYM, Idrus MAMM. 2014. Mechanical Properties of Activated Carbon (AC) Coconut Shell Reinforced Polypropylene Composites Encapsulated with Epoxy Resin. Asia-Pacifi c Chemical, Biological & Environmental Engineering Society Procedia 9: 92 – 96. doi: 10.1016/j.apcbee.2014.01.017

Selvaraju G, Bakar NKA. 2018. Process conditions for the manufacture of highly micro-mesoporous eco-friendly activated carbon from artocarpus integer bio-waste by steam activation. Journal of the Taiwan Institute of Chemical Engineers1–13. doi:10.1016/j.jtice.2018.08.011

Shamsuddin MS, Yusoff NRN, Sulaiman MA.2016. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry 19: 558 – 565. doi: 10.1016/j.proche.2016.03.053

Shen F, Guo T, Bai C, Qiu M, Qi X. 2018. Hydrolysis of cellulose with one-pot synthesized sulfonated carbonaceous solid acid. Fuel Processing Technology 169: 244–247. doi:10.1016/j.fuproc.2017.10.015

Sigdel A, Jung W, Min B, Lee M, Choi U, Timmes T, Kim SJ Kang CU, Kumar R, Jeon BH. 2017. Concurrent removal of cadmium and benzene from aqueous solution by powdered activated carbon impregnated alginate beads. Catena 148: 101-107. doi:10.1016/j. catena.2016.06.029

Suriyachai N, Champreda V, Sakdaronnarong C, Shotipruk A , Laosiripojana N. 2017. Sequential organosolv fractionation/hydrolysis of sugarcane bagasse: The coupling use of heterogeneous H3PO4-Activated carbon as acid promoter and hydrolysis catalyst. Renewable Energy 113: 1141-1148. doi: 10.1016/j. renene.2017.06.003

Vinsiah R, Suharman A, Desi. 2015. Pembuatan karbon aktif dari cangkang kulit buah karet (Hevea brasilliensis). Palembang, Universitas Sriwijaya

Viswanathan B, Neel PI, Varadarajan TK. 2009. Methods of activation and specific applications of carbon materials. National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai, India.

Wei Q, Fan H, Qin F, Ma Q, Shen W. 2018. Metal-free honeycomb-like porous carbon as catalyst for direct oxidation of benzene to phenol. Carbon 133: 6-13. doi:10.1016/j.carbon.2018.03.009

Wibowo S, Syafi W, Pari G. 2011. Karakterisasi permukaan arang aktif tempurung biji nyamplung. Makara Teknologi 15(1): 17-24.

Wibowo S, Syafi W, Pari G. 2011. Karakteristik arang aktif tempurung biji nyamplung (Callophyllum innophyllum Linn). Jurnal Penelitian Hasil Hutan 28(1): 43-54.

Xia X, Jianga S, Zhang W, Wang K, Shao H, Wu Z. 2019. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal. Fuel 244: 176–183. doi:10.1016/j.fuel.2019.01.183

Xu J, Liu H, Yang R, Li G, Hu C. 2012. Hydroxylation of benzene by activated carbon catalyst. Chinese Journal Of Catalysis 33(10): 1622–1630. doi: 10.1016/s1872- 2067(11)60444-0

Yang CS, Jang YS, Jeong HK. 2014. Bamboo-based activated carbon for supercapacitor applications. Current Applied Physics 14(12): 1616-1620. doi: 10.1016/j. cap.2014.09.021.

Yek, PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, Lam SS. 2019. Microwave steam activation, an innovative pyrolysis approach to convertwaste palm shell into highly microporous activated carbon. Journal of Environmental Management 236: 245–253. doi:10.1016/j.jenvman.2019.01.010

Zhou J, Hao S, Gao L, Zhang Y. 2014. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Annals of Nuclear Energy 72: 237–241. doi:10.1016/j.anucene.2014.05.028

Zhao X, Zeng X, Qin Y, Li X, Zhu T, Tang X. 2018. An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon. Chemosphere 206: 285-292. doi: 10.1016/j.chemosphere.2018.04.126

Zulfadhli M, Iriany. 2017. Pembuatan karbon aktif dari cangkang buah karet (Hevea brasilliensis) dengan aktivator H3PO4 DAN aplikasinya sebagai penjerap Cr(VI). Jurnal Teknik Kimia USU 6(1): 23-28



DOI: https://doi.org/10.22146/jik.57479

Article Metrics

Abstract views : 14542 | views : 18032

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Editorial Board Jurnal Ilmu Kehutanan
Faculty of Forestry, Universitas Gadjah Mada
Building D 2nd floor
Jl. Agro No 1, Bulaksumur, Sleman 55281
Phone. +62-274-512102, +62-274-550541, +62-274-6491420
Fax. +62-274-550541 E-mail : jik@ugm.ac.id
former website : jurnal.ugm.ac.id/jikfkt/
new website : jurnal.ugm.ac.id/v3/jik/

 

Indexed by:

 

Jurnal Ilmu Kehutanan is under the license of Creative Commons Attribution-ShareAlike 4.0 International