Utilization of Carbonized Wood from Tropical Fast-Growing Trees for Functional Materials

https://doi.org/10.22146/jik.5736

Joko Sulistyo(1*), Toshimitsu Hata(2), Sri Nugroho Marsoem(3)

(1) Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta
(2) Research Institute for Sustainable Humanosphere, Kyoto University, Japan
(3) Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Pembangunan hutan tanaman dari jenis-jenis cepat tumbuh di kawasan tropis menimbulkan limbah biomassa kayu yang sebagian saat ini digunakan untuk kayu bakar dan sebagian lain digunakan untuk produksi arang dengan tujuan penggunaan yang terbatas. Pengembangan material-material fungsional untuk berbagai aplikasi teknik dengan memanfaatkan arang kayu dari jenis pohon cepat tumbuh harus mempertimbangkan struktur mikro dan struktur pori dalam arang kayu yang berhubungan dengan kondisi karbonisasi. Ulasan ini meliputi kemajuan penelitian-penelitian saat ini pada karbonisasi kayu dari pohon cepat tumbuh tropis, mekanisme perkembangan struktur mikro dan struktur pori dalam arang kayu selama karbonisasi, pemanfaatan yang tepat dari struktur mikro dan porositas dalam arang kayu untuk pengembangan material-material fungsional serta usaha dan peningkatan pengembangan material-material fungsional menggunakan arang kayu dari pohon cepat tumbuh tropis.

Katakunci: arang kayu, material fungsional, pohon cepat tumbuh, karbonisasi

 

Utilization of Carbonized Wood from Tropical Fast-Growing Trees for Functional Materials

Abstract

Establishment of fast-growing tree species plantations in tropical areas generate wood biomass residue in which some of them are currently utilized for heating fuel and some others are used for charcoal production with limited purposes. The development of functional materials for engineering applications utilizing carbonized wood from fast-growing trees species have to consider the microstructure and pore structure in carbonized wood which has a relationship to the carbonization conditions. This review covers the current researches on progress in the carbonization of wood from tropical fast-growing trees, mechanism of the microstructure and pore structure development in carbonized wood during carbonization, proper utilizations of the microstructure and porosity in carbonized wood for the development of functional materials and efforts and enhancing the development of functional materials using carbonized wood from tropical fast-growing trees.


Keywords


carbonized wood; functional materials; fast-growing trees; carbonization

Full Text:

PDF


References

  1. Byrne CE & Nagle DC. 1997. Carbonization of wood for advanced materials application. Carbon 35: 259-266.
  2. Cheung TLY & NgDHL. 2007. Conversion of bamboo to biomorphic composites containing silica and silicon carbide nanowires. J Am Ceram Soc 90: 559-564.
  3. Dermirbas A. 2001. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers and Manag 42: 1357-1378.
  4. Fujisawa M, Hata T, Kitagawa H, Bronsveld P, Suzuki Y, Hasezaki K, Noda Y &Imamura Y. 2008.Thermoelectric properties of porous SiC/C composites. Renew Energy 33: 309-313.
  5. Gomez-Serrano V, Valenzuela-Calahorro C & Pastor-Villegas J. 1993. Characterization of rockrose wood, char and activated carbon. Biomass and Bioenergy 4: 355-364.
  6. Greil P. 2001. Biomorphous ceramics from lignocellulosic. J of Eur Ceram Soc 21: 105-118.
  7. Ishimaru K, Hata T, Bronsveld P & Imamura Y. 2007. Microsectioning study of carbonized wood after cell wall sectioning. J Mater Sci 42: 2662-2668.
  8. Ishimaru K, Hata T, Bronsveld P, Meier D & Imamura Y. 2007. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J Mater Sci 42: 122-129.
  9. Kataki R & Konwer D. 2002. Fuelwood characteristics of indigenous tree species of North-East India. Biomass and Bioenergy 22: 433-437.
  10. Khristova P & Khalifa AW. 1993. Carbonization of some fast-growing species in Sudan. Appl Energy 45: 347-354.
  11. Kumar M, Gupta RC & Sharma T. 1992. Effect of carbonization conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass and Bioenergy 3: 411-417.
  12. Kumar M & Gupta RC. 1995. Scanning electron microscopic study of acacia and eucalyptus wood chars. J Mater Sci 30: 544-551.
  13. Kumar M, Gupta RC & Sharma T. 1993. X-ray diffraction studies of acacia and eucalyptus wood chars, J Mater Sci 28: 805-810.
  14. Kumar M, Verma BB & Gupta RC. 1999. Mechanical properties of acacia and eucalyptus wood chars. Energy Sour 21: 675-685.
  15. Kumar M & Gupta RC. 1993. Electrical resistivity of acacia and eucalyptus wood chars. J Mater Sci 28: 440-444.
  16. Kumar M & Gupta RC. 1994. Influence of carbonization conditions and wood species on carbon dioxide reactivity of resultant wood char powder. Fuel Process Technol 38: 223-233.
  17. Mackay DM & Roberts PV. 1981. The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars. Carbon 20: 95-104.
  18. Maniatis K & Nurmala M. Activated carbon production from tropical biomass. Proceeding of Biomass Energy, Industry and Environment: 6 thE.C. Conference, 22-26 April 1991, Athens.
  19. Marsoem SN, Sulistyo J & Irawati D. Status and prospects of charcoal in Indonesia. Proceedings of The International Workshop on “Better Utilization of Forest Biomass for Local Community and Environments”. 16-17 March 2004, Bogor.
  20. Nishiyama K, Hata T, Imamura Y & Ishihara S. 1998.Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J Wood Sci 44: 56-61.
  21. Nurhayati T, Waridi Y & Roliadi H. 2006. Progress in the technology of energy conversion from woody biomass. For Study China 8: 1-8.
  22. Ogawa M, Okimori Y & Takahashi F. 2006. Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitig and Adaptation Strategies for Global Change 11: 429-444.
  23. Oya A & Iu WG. 2002. Deodorazation performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon 40: 1391-1399.
  24. Paris O, Zollfrank C & Zickler GA. 2005. Decomposition and carbonization of wood biopolymers-a microstructural study of softwood pyrolysis. Carbon 43: 53-66.
  25. Pulido L, Hata T, Kurimoto Y, Doi S, Ishihara S & Imamura Y. 2001, Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J Wood Sci 47: 48-57.
  26. Risnasari I, Wardani L & Hadi YS. Sifat fisik dan mekanik kayu jabon yang di modifikasi secara impregnasi dengan larutan styrene dan methylmetacrylate, Prosiding Seminar Nasional MAPEKI XIV.2 November 2011, Yogyakarta. Hlm 52 – 58.
  27. Rodriguez-Reinoso F & Molina-Sabio M. 1992. Activated carbon from lignocellulosic materials by chemical and or physical activation: an overview. Carbon 30: 1111-1118.
  28. ShanavasA & Kumar BM. 2003. Fuelwood characteristics of tree species in home gardern of Kerala, India. Agrofor Syst 58: 11-24.
  29. Subyakto, Hata T, Ide I, Yamane T & Kawai S. 2004. Fire protection of a laminated veneer lumber joint by wood carbon phenolic spheres sheeting. J Wood Sci 50: 157-161.
  30. Sulistyo J, Hata T, Fujisawa M, Hashimoto K, Imamura Y & Kawasaki T. 2009. Anisotropic thermal conductivity of three-layer laminated carbon-graphite composites from carbonized wood. J Mater Sci 44: 734-744.
  31. Sulistyo J, Hata T, Kitagawa H, Bronsveld P, Fujisawa M, Hashimoto K & Imamura Y. 2010. Electrical and thermal conductivities of porous SiC/SiO2/C composites with different morphology from carbonized wood. J Mater Sci 45: 1107-1116.
  32. Sulistyo J, Hata T & Marsoem SN. Microstructure of charcoal produced by traditional technique, Proceedings of the 3rd International Symposium of Indonesian Wood Research Society. 3-4 November 2011, Yogyakarta. Hlm 64 – 68.
  33. Varela-Feria FJ, Ramirez-Rico, AR, de Arellano-Lopez, J. Martinez-Fernandez, and M. Singh, 2008, Reaction-formation mechanisms and microstructure evolution of biomorphic SiC. J Mater Sci 43: 933-941.
  34. Wahyuni NS & Sulistyo J. 2013. Karakteristik energy kayu dan kulit lima jenis pohon dari hutan di Merauke, Skripsi (tidak dipublikasikan), Fakultas Kehutanan, Universitas Gadjah Mada.
  35. Wang S & Hung C. 2002. Electromagnetic shielding efficiency of the electric field of charcoal from six wood species. J Wood Sci 49: 450.
  36. Zollfrank C & Sieber H. 2005. Microstructure evolution and reaction mechanism of biomorphouc SiC ceramics. J Am Ceram Soc 88: 51-58.



DOI: https://doi.org/10.22146/jik.5736

Article Metrics

Abstract views : 1465 | views : 1247

Refbacks

  • There are currently no refbacks.




Copyright (c) 2012 Jurnal Ilmu Kehutanan

License URL: https://creativecommons.org/licenses/by-nc-sa/4.0/


© Editorial Board Jurnal Ilmu Kehutanan
Faculty of Forestry, Universitas Gadjah Mada
Building D 2nd floor
Jl. Agro No 1, Bulaksumur, Sleman 55281
Phone. +62-274-512102, +62-274-550541, +62-274-6491420
Fax. +62-274-550541 E-mail : jik@ugm.ac.id
former website : jurnal.ugm.ac.id/jikfkt/
new website : jurnal.ugm.ac.id/v3/jik/

 

Indexed by:

 

Jurnal Ilmu Kehutanan is under the license of Creative Commons Attribution-ShareAlike 4.0 International