Pengaruh Ukuran Serbuk dan Penambahan Tempurung Kelapa Terhadap Kualitas Pelet Kayu Sengon
Anindya Husnul Hasna(1*), J. P. Gentur Sutapa(2), Denny Irawati(3)
(1) Universitas Gadjah Mada
(2) Departemen Teknologi Hasil Hutan, Fakultas Kehutanan, Universitas Gadjah Mada
(3) Departemen Teknologi Hasil Hutan, Fakultas Kehutanan, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.
Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood Pellet
Abstract
The waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.
Keywords
Full Text:
PDFReferences
Acda MN. 2015. Physico-chemical properties of wood pellets from coppice of short rotation tropical hardwoods. Fuel 160:531–533.
Alakangas E, Impola R. 2015. Quality guidelines for wood fuels in Finland: VTT-M-04712-15. [https://www.researchgate.net/publication/283496833_Quality_guidelines_of_wood_fuels_in_Finland_VTT-M-04712-15]. diakses pada tanggal 20 April 2018.
American Society for Testing and Materials. 2006. ASTM D1762-84: Analysis of wood charcoal. USA: American Society for Testing and Materials.
American Society for Testing and Materials. 2008. ASTM D5373-08: Standard test methods for instrumental determination of carbon, hidrogen, and nitrogen in laboratory samples of coal. USA: American Society for Testing and Materials.
American Society for Testing and Materials. 2013. ASTM D3172-13: Standard practice for proximate analysis of coal and coke. USA: American Society for Testing and Materials.
American Society for Testing and Materials. 2000. ASTM D2015-00: Standard test method for gross calorivic value of coal and coke by the adiabatic bomb calorimeter. USA: American Society for Testing and Materials.
Badan Standarisasi Nasional. 2014. SNI 8021:2014, Pelet kayu. Badan Standarisasi Nasional.
Carone MT, Pantaleo A, Pellerano A. 2011. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass and Bioenergy 35(1): 402–410.
CEN/TS 14588. 2003. Solid biofuels e terminology, definitions and descriptions, european committee for standardization.
Dick EP, Ryabov GA, Tugov AN. 2007. Comparing properties of coal ash and alternative-fuel ash. Therm Eng 54: 231-235.
EnPlus. 2015. Quality certification scheme for wood pellets. https://enplus-pellets.eu/en-in/component /attachments/?task=download&id=102. Diakses 23 Februari 2018.
Gomez KA, Gomez AA. 1995. Prosedur statistik untuk penelitian pertanian. sjamsudin e, justika s, dan baharsjah (Penerjemah). Penerbit Universitas Indonesia. Jakarta.
Harun NY, Afzal MT. 2016. Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Engineering 148: 93–99.
Hendra D. 2012. Rekayasa pembuatan mesin pelet kayu dan pengujian hasilnya (design and manufacture of wood pellets machine and testing of its product). Jurnal Penelitian Hasil Hutan 30(2): 144–154.
IWPB. 2012. Proposal for sustainability principles for woody biomass sourcing and trading. Initiative Wood Pellets Buyers (IWPB) Working Group on Sustainability, Linkebeek.
Junary E, Pane JP, Herlina N. 2015. Pengeruh suhu dan waktu karbonisasi pada pembuatan bioarang berbahan baku pelepah aren (Arenga pinnata). Jurnal Teknik Kimia USU 4(2): 46-52.
Kaliyan N, Morey VR. 2009. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy 33(3): 337–359.
Liyanage CD, Pieris M. 2015. A physico-chemical analysis of cococnut shell powder. Procedia Chemistry 16: 222-228.
Liu Z, Quek A, Balasubramanian R. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Applied Energy 113: 1315–1322.
Liu Z, Mi B, Jiang Z, Fei B, Cai Z, Liu X. 2016. Improved bulk density of bamboo pellets as biomass for energy production. Renew Energy 86: 1-7.
Mani S, Tabil LG, Sokhansanj S. 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7). pp.648–654.
Miranda T, Montero I, Sepúlveda FJ, Arranz JI, Rojas CV, Nogales S. 2015. A review of pellets from different sources. Materials 8(4): 1413–1427.
Monedero E, Portero H, Lapuerta M. 2015. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology 132:15–23.
Nguyen QN, Cloutier A, Achim A, Stevanovic T. 2015. Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass and Bioenergy 80: 338–349.
Obernberger I, Thek G. 2010. The pellet handbook: The production and thermal utilisation of biomass pellets, London, Washington DC.
Pari G. 1996. Analisis komponen kimia dari kayu sengon dan kayu karet pada beberapa macam umur. Buletin Penelitian Hastl Hutan 14(8): 321 – 327.
Poddar S, Kamruzzaman M, Sujan SMA, Hossain M, Jamal MS, Gafur MA, Khanam M. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 131:43–48.
Reginald Child R, Ramanathan S. 1938. Composition of coconut shells. J. Am. Chem. Soc. 60 (6): 1506–1507.
Saptoadi H. 2008. The best biobriquette dimension and its particle size. Asian J. Energy Environ. 9(3): 161–175.
Sari NK. 2009. Pembuatan bioetanol dari rumput gajah dengan destilasi batch. Jurnal Teknik Kimia Indonesia 8(3): 94-103.
Singh M, Singh R, Gill G. 2015. Estimatiang the correlation between the calorific value and elemental components of biomass using regrassion analysis. International Journal of Industrial Electronics and Electrical Engineering 3(9): 18–23.
Speight JG. 2005. Handbook of coal analysis. New Jersey: John Wiley & Sons Inc
Sonarkar PR, Chaurasia AS. 2018. Thermal performance of three improved biomass-fired cookstoves using fuel wood, wood pellets and coconut shell. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, 21(3). Pp.1429-1449
Sylviani, Suryandari EY. 2013. Studi kasus di kabupaten wonosobo (potential development of wood pellets as renewable fuel , case study of wonosobo district). Jurnal Penelitian Sosial dan Ekonomi Kehutanan 10(4):235–246.
Wibowo S, Laia DPO, Mohammad K, Gustan P. 2017. Karakterisasi karbon pelet campuran rumput gajah (Pennisetum Purpureum Scumach) dan tempurung nyamplung (Calophyllum Inophyllum Linn). Jurnal Penelitian Hasil Hutan 35(1): 73–82.
DOI: https://doi.org/10.22146/jik.52428
Article Metrics
Abstract views : 7758 | views : 9466Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Ilmu Kehutanan
License URL: https://creativecommons.org/licenses/by-nc-sa/4.0/
© Editorial Board Jurnal Ilmu Kehutanan
Faculty of Forestry, Universitas Gadjah Mada
Building D 2nd floor
Jl. Agro No 1, Bulaksumur, Sleman 55281
Phone. +62-274-512102, +62-274-550541, +62-274-6491420
Fax. +62-274-550541 E-mail : jik@ugm.ac.id
former website : jurnal.ugm.ac.id/jikfkt/
new website : jurnal.ugm.ac.id/v3/jik/
Indexed by:
Jurnal Ilmu Kehutanan is under the license of Creative Commons Attribution-ShareAlike 4.0 International