Analitik Geovisual Pengaruh Pandemi COVID-19 Terhadap Pola Dan Kecenderungan Kriminalitas Di Daerah Istimewa Yogyakarta
Zelin Resiana(1*), Trias Aditya(2)
(1) Gadjah Mada University
(2) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Ashby, M. P. J. (2020). Initial evidence on the relationship between the coronavirus pandemic and crime in the United States. Crime Science, 9(1), 1–16. https://doi.org/10.1186/s40163-020-00117-6
Campedelli, G. M., Favarin, S., Aziani, A., & Piquero, A. R. (2020). Disentangling community-level changes in crime trends during the COVID-19 pandemic in Chicago. Crime Science, 9(1), 1–18. https://doi.org/10.1186/s40163-020-00131-8
Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (1998). Clustering BT - Data Mining Methods for Knowledge Discovery (K. J. Cios, W. Pedrycz, & R. W. Swiniarski (eds.); pp. 375–429). Springer US. https://doi.org/10.1007/978-1-4615-5589-6_8
Durairaja, S., Ayu Mat Saat, G., & Rahim Kamaluddin, M. (2019). Exploring Demography and Sociological Factors Underlying Decisions to Join Gangs among Indians. 89(April), 33–43.
Entorf, H., & Spengler, H. (1998). Socio-economic and demographic factors of crime in Germany: evidence from panel data of the German states (No. 98–16).
Hanoatubun, S. (2020). Dampak Covid–19 terhadap Prekonomian Indonesia. EduPsyCouns: Journal of Education, Psychology and Counseling, 2(1), 146–153.
Li, Xia, & Kraak, M. J. (2010). A temporal visualization concept: A new theoretical analytical approach for the visualization of multivariable spatio-temporal data. 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5567529
Li, Xingan, & Juhola, M. (2014). Country crime analysis using the self-organizing map, with special regard to demographic factors. AI and Society, 29(1), 53–68. https://doi.org/10.1007/s00146-013-0441-7
Mardiyah1, R. A., & Nurwati, R. N. (2020). DAMPAK PANDEMI COVID-19 TERHADAP PENINGKATAN ANGKA PENGANGGURAN DI INDONESIA.
Mitchell, A. (2005). Spatial measurements & statistics. ESRI Press.
Nurhuda, I., Nyoman, I. G., & Jaya, M. (2018). PEMODELAN KRIMINAL DI JAWA TIMUR DENGAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION ( GWR ). 4(2), 150–158.
Omotor, D. (2014). Demographic and Socio-Economic Determinants of Crimes in Nigeria ( A Panel Demographic and Socio-Economic Determinants of Crimes in Nigeria ( A Panel Data Analysis ). Journal of Applied Business and Economics, May.
Pradana, K. A. & Santosa, P. B. (2019). Spatial autocorrelation analysis of tuberculosis cases (2016-2018) in Kebumen. KnE Engineering. 4(3), 150–157. https://doi.org/10.18502/keg.v4i3.584
Romlah, S. (2020). COVID-19 Dan Dampaknya Terhadap Buruh di Indonesia. ’ADALAH, 4(1).
Srivastava, S. (2010). Effective crime control using GIS.
Statistik, B. P. (2019). Statistik Kriminal 2019. In Cover statistik kriminal 2019.
Stickle, B., & Felson, M. (2020). Crime Rates in a Pandemic: the Largest Criminological Experiment in History. American Journal of Criminal Justice, 45(4), 525–536. https://doi.org/10.1007/s12103-020-09546-0
Taufiq, Z. F. (2020). Covid 19 Dan Angka Kriminalitas Di Indonesia: Penerapan Teori-Teori Kriminologi. Jurnal Ilmu Sosial Dan Pendidikan, 4(4). http://ejournal.mandalanursa.org/index.php/JISIP/index
Thomas, J. J., & Cook, K. A. (2005). The Ilumninating the Path: the Research amd Development Agenda for Visual Analytics. In IEE Computer Society Press.
DOI: https://doi.org/10.22146/jgise.80670
Article Metrics
Abstract views : 1173 | views : 1849Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.