The Study of Seeing Characteristic at the UAD Observatory on Procyon, Sirius, Spica, Nunki, Altair, and Vega using Celestron C6-N telescope
Ricka Tanzilla(1), Yudhiakto Pramudya(2*), M. Khairul Ardi(3), Okimustava Okimustava(4)
(1) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(2) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(3) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(4) Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Astronomical observatories can be declared feasible if they have a good condition such as a dark sky, relatively little cloud coverage, relatively low light pollution, and small air turbulence or seeing. The UAD (Universitas Ahmad Dahlan) observatory was measuring the seeing characteristic to assess the feasibility condition. The DIMM method (Differential Image Motion Monitor) was utilized to get the measurement in April, May, and September 2019. The 150 mm diameter Celestron C6-N telescope was used as the instrument to get the star images. The characteristics of a good seeing value on April 10, 2019, are Procyon star with a value of 0.2 arc seconds, and on September 18, 2019, the Vega star with a value of 1.6 arc seconds. Analysis of the seeing characteristic at the UAD Observatory can be used as a reference for observers on star selection, and the operation of the telescope
Keywords
Full Text:
PDFReferences
- Mahasena P, Akbar EI, Yusuf M, Hidayat T, Dermawan B, Herdiwijaya D, et al. Pengukuran Seeing di Sekitar Gunung Timau, Nusa Tenggara Timur. 2013;p. 2–4.
- Cherubini T, Businger S, Lyman R, Chun M. Modeling optical turbulence and seeing over Mauna Kea. Journal of Applied Meteorology and Climatology. 2008;47(4):1140–1155.
- Floyd DJE, Thomas-Osip J, Prieto G. Seeing, wind, and outer scale effects on image quality at the magellan telescopes. Publications of the Astronomical Society of the Pacific. 2010;122(892):731.
- Aime C, Roddier F. Imaging through turbulence with telescope arrays. Optics Communications. 1976;19(1):57–60.
- Ahmad N, Loon CW, Syukor MS, Haron S, Zainuddin MZ, Tahar MR. The astronomical seeing measurements at Langkawi National Observatory. In: 2015 International Conference on Space Science and Communication (IconSpace). IEEE; 2015. p. 339–342.
- Kornilov V, Tokovinin A, Shatsky N, Voziakova O, Potanin S, Safonov B. Combined MASS–DIMM instruments for atmospheric turbulence studies. Monthly Notices of the Royal Astronomical Society. 2007;382(3):1268–1278.
- Danesh A, Khosroshahi HG, Javanmardi B, Molaeinezhad A, Abedini Y, Altafi H, et al. Iranian national observatory project: seeing measurements at mount Gargash. Experimental Astronomy. 2019;47(1-2):145–160.
- Tanzilla R, Jauhari I, Pramudya Y. Measurement Eccentricity the Moon’s Orbit with Image Analysis Technique by Using Tracker Software. Indonesian Review of Physics. 2018;1(1):19–25.
- Raisal AY, Pramudya Y, Okimustafa O, Muchlas M. The moon phases influence on the beginning of astronomical dawn determination in Yogyakarta. In: International Journal of Science and Applied Science: Conference Series. vol. 2. UNS; 2017. p. 1–7.
- Kolář J, Prudký J. How to measure seeing. European Association for Astronomy Education (EAAE), Online course available: http://www.eaaeastronomy.org/catchastar/images/2015/18 How to measure seeing pdf;.
- Hege EK, Jefferies SM, Lloyd-Hart M. Computing and telescopes at the frontiers of optical astronomy. Computing in Science & Engineering. 2003;5(6):42–51.
- Tritton DJ. Physical fluid dynamics. Springer Science & Business Media; 2012.
- Moulick R. Good Morning Science. India. 2017;p. 1–7.
- Bakker A. Lecture 9-kolmogorov’s theory applied computational fluid c Fluent Inc. 2002;. dynamics. Educational aterial
- Darmawan S. Pengembangan model turbulen RNG KE untuk aplikasi CFD pada runner cross flow dalam komponen urbin gas mikro bioenergi proto X 2a= RNG KE turbulence model development for cfd application on cross flow runner of a proto x 2a bioenergy micro gas turbine. 2015;.
- Martin HM. Image motion as a measure of seeing quality. Publications of the Astronomical Society of the Pacific. 1987;99(622):1360.
- Fried DL. Statistics of a geometric representation of wavefront distortion. JoSA. 1965;55(11):1427–1435.
- Tokovinin A. From differential image motion to seeing. Publications of the Astronomical Society of the Pacific. 2002;114(800):1156.
- Ruler M. How to Find FWHM; 2017. Available from: https://sciencing.com/fwhm-5370769.html.
- Rana T. Full width at half maximum; 2018. Available from: https://en.wikipedia.org/w{%}5C/index.php?title= Full{_}width{_}at{_}half{_}maximum{&}oldid=864676968.
- Martinez P, Kolb J, Sarazin M, Tokovinin A. On the difference between seeing and image quality: when the turbulence outer scale enters the game. ESO Messenger. 2010;141:5.
- Vernin J, Munoz-Tunon C. Measuring astronomical seeing: the DA/IAC DIMM. Publications of the Astronomical Society of the Pacific. 1995;107(709):265.
- Brandt PN. Measurement of solar image motion and blurring. Solar Physics. 1970;13:243–246.
- Stock J, Keller G. Astronomical seeing. tele. 1961;p. 138.
- Sarazin M, Roddier F. The ESO differential image motion monitor. Astronomy and Astrophysics. 1990;227:294–300.
- Douglass AE. Scales of seeing. 1898;.
- Hidayat T, Mahasena P, Dermawan B, Herdiwijaya D, Setyanto H, Irfan M, et al. Developing information system on lunar crescent observations. Journal of Mathematical and Fundamental Sciences. 2010;42(1):67–80.
DOI: https://doi.org/10.22146/jfi.v25i1.58087
Article Metrics
Abstract views : 991 | views : 766Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Yudhiakto Pramudya, Ricka Tanzilla, M. Khairul Ardi, Okimustava Okimustava
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.