State-of-the-Art Drought Handling in Indonesia
Triarko Nurlambang(1), Ratih Dewanti Dimyati(2), Babag Purbantoro(3), Nurul Sri Rahatiningtyas(4), Dewanti Aisyah Legowo(5), Ahmad Fakhruddin(6), Muhammad Dimyati(7*), Grizzly Pradipta Singhasana Enshito(8)
(1) Department of Geography Faculty of Mathematics and Natural Sciences Universitas Indonesia
(2) Research Center for Remote Sensing, National Research and Innovation Agency
(3) Research Center for Remote Sensing, National Research and Innovation Agency
(4) Department of Geography Faculty of Mathematics and Natural Sciences Universitas Indonesia
(5) Center for Applied Geography Research Faculty of Mathematics and Natural Sciences Universitas Indonesia
(6) Department of Geography Faculty of Mathematics and Natural Sciences Universitas Indonesia
(7) Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
(8) Center for Applied Geography Research Faculty of Mathematics and Natural Sciences Universitas Indonesia
(*) Corresponding Author
Abstract
Droughts tend to become more extreme, longer, and more frequent as an impact of climate change. Droughts now impact various development activities, especially those reliant on water resources, like agriculture for food security. Drought management issues in Indonesia stem from inadequate regulations and laws regarding drought response, due to intricate agency procedures and overlapping responsibilities. Nevertheless, there are currently established partial regulations and laws that govern the management of meteorological data and the accessibility of water resources. Without clear rules, policies, and frameworks, government policies on drought become less effective and overlapping. The research and novelty aim to design an integrated framework for handling drought by examining the present circumstances of relevant agencies using spatial nexus framework that is divided into three stages (construction, deconstruction, and reconstruction). During the first stage, the focus goes toward developing the construction framework will be proposed. The construction framework was conducted descriptively through a desk research method of drought management public policies, institutions, and operating systems for the agricultural sector in Indonesia. Moreover, a panel discussion was held to obtain the data and information about drought management by the government. Field observations were conducted to determine the handling of water resources practically for agriculture. Thus, drought management has been more concentrated on meteorological/climatological and hydrological elements. Moreover, it focuses on the statistical results of public and agricultural activities rather than on their socioeconomic consequences. A spatial approach will become the integration node of meteorological/hydrological elements, socioeconomic components, and agricultural activities.
Keywords
Full Text:
PDFReferences
Abbasian, M. S., Najafi, M. R., & Abrishamchi, A. (2021). Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index. Journal of Hydrology, 592, 125586. https://doi.org/10.1016/j.jhydrol.2020.125586
Ahmadalipour, A., & Moradkhani, H. (2018). Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Science of The Total Environment, 644, 520–535. https://doi.org/10.1016/j.scitotenv.2018.07.023
Aitkenhead, I., Kuleshov, Y., Watkins, A. B., Bhardwaj, J., & Asghari, A. (2021). Assessing agricultural drought management strategies in the Northern Murray–Darling Basin. Natural Hazards, 109(2), 1425–1455. https://doi.org/10.1007/s11069-021-04884-6
Ault, T. R., Mankin, J. S., Cook, B. I., & Smerdon, J. E. (2016). Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Science Advances, 2(10). https://doi.org/10.1126/sciadv.1600873
Baudoin, M.-A., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk Reduction, 23, 128–137. https://doi.org/10.1016/j.ijdrr.2017.05.005
Bijl, D. L., Bogaart, P. W., Dekker, S. C., & van Vuuren, D. P. (2018). Unpacking the nexus: Different spatial scales for water, food and energy. Global Environmental Change, 48, 22–31. https://doi.org/10.1016/j.gloenvcha.2017.11.005
Bruce, J. P. (1994). Natural Disaster Reduction and Global Change. Bulletin of the American Meteorological Society, 75(10), 1831–1835. https://doi.org/10.1175/1520-0477(1994)075<1831:NDRAGC> 2.0.CO;2
Capello, R., & Lenzi, C. (2014). SPATIAL HETEROGENEITY IN KNOWLEDGE, INNOVATION, AND ECONOMIC GROWTH NEXUS: CONCEPTUAL REFLECTIONS AND EMPIRICAL EVIDENCE. Journal of Regional Science, 54(2), 186–214. https://doi.org/10.1111/jors.12074
Chang, F.-C., & Wallace, J. M. (1987). Meteorological Conditions during Heat Waves and Droughts in the United States Great Plains. Monthly Weather Review, 115(7), 1253–1269. https://doi.org/10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2
Chang, T. J., & Kleopa, X. A. (1991). A PROPOSED METHOD FOR DROUGHT MONITORING. Journal of the American Water Resources Association, 27(2), 275–281. https://doi.org/10.1111/j.1752-1688.1991.tb03132.x
Chang, T. J., & Stenson, J. R. (1990). IS IT REALISTIC TO DEFINE A 100-YEAR DROUGHT FOR WATER MANAGEMENT? Journal of the American Water Resources Association, 26(5), 823–829. https://doi.org/10.1111/j.1752-1688.1990.tb01416.x
Chao, N., Wang, Z., Jiang, W., & Chao, D. (2016). A quantitative approach for hydrological drought characterization in southwestern China using GRACE. Hydrogeology Journal, 24(4), 893–903. https://doi.org/10.1007/s10040-015-1362-y
Clausen, B., & Pearson, C. P. (1995). Regional frequency analysis of annual maximum streamflow drought. Journal of Hydrology, 173(1–4), 111–130. https://doi.org/10.1016/0022-1694(95)02713-Y
Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research: Atmospheres, 121(5), 2060–2074. https://doi.org/10.1002/2015JD023929
D’Arrigo, R., & Smerdon, J. E. (2008). Tropical climate influences on drought variability over Java, Indonesia. Geophysical Research Letters, 35(5), L05707. https://doi.org/10.1029/2007GL032589
Dietz, T., Ostrom, E., & Stern, P. C. (2017). The struggle to govern the commons. In International Environmental Governance (pp. 53–57). Routledge.
Douglas, I. (2009). Climate change, flooding and food security in south Asia. Food Security, 1(2), 127–136. https://doi.org/10.1007/s12571-009-0015-1
Dracup, J. A., Lee, K. S., & Paulson, E. G. (1980). On the statistical characteristics of drought events. Water Resources Research, 16(2), 289–296. https://doi.org/10.1029/WR016i002p00289
Durley, J. L., & de Loë, R. C. (2005). Empowering communities to carry out drought contingency planning. Water Policy, 7(6), 551–567. https://doi.org/10.2166/wp.2005.0033
Eklund, L., Romankiewicz, C., Brandt, M., Doevenspeck, M., & Samimi, C. (2016). Data and methods in the environment-migration nexus: A scale perspective. Erde, 147(2), 139–152. https://doi.org/10.12854/erde-147-10
Eltahir, E. A. B. (1992). Drought frequency analysis of annual rainfall series in central and western Sudan. Hydrological Sciences Journal, 37(3), 185–199. https://doi.org/10.1080/02626669209492581
Estrela, M. J., Peñarrocha, D., & Millán, M. (2000). Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950-1996. A spatio-temporal analysis. International Journal of Climatology, 20(13), 1599–1618. https://doi.org/10.1002/1097-0088(20001115)20:13<1599::AID-JOC559>3.0.CO;2-Q
Falcon, W. P., Naylor, R. L., Smith, W. L., Burke, M. B., & McCullough, E. B. (2004). Using climate models to improve Indonesian food security. Bulletin of Indonesian Economic Studies, 40(3), 355–377. https://doi.org/10.1080/0007491042000231520
Frick, D. M., Bode, D., & Salas, J. D. (1990). Effect of Drought on Urban Water Supplies. I: Drought Analysis. Journal of Hydraulic Engineering, 116(6), 733–753. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:6(733)
Fu, X., Svoboda, M., Tang, Z., Dai, Z., & Wu, J. (2013). An overview of US state drought plans: crisis or risk management? Natural Hazards, 69(3), 1607–1627. https://doi.org/10.1007/s11069-013-0766-z
Gumbel, E. J. (1963). Statistical Forecast of Droughts. International Association of Scientific Hydrology. Bulletin, 8(1), 5–23. https://doi.org/10.1080/02626666309493293
Gumus, V. (2023). Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. Journal of Hydrology, 626, 130386. https://doi.org/10.1016/j.jhydrol.2023.130386
Hervás-Gámez, C., & Delgado-Ramos, F. (2019). Drought Management Planning Policy: From Europe to Spain. Sustainability, 11(7), 1862. https://doi.org/10.3390/su11071862
Hoque, M., Pradhan, B., Ahmed, N., & Alamri, A. (2021). Drought Vulnerability Assessment Using Geospatial Techniques in Southern Queensland, Australia. Sensors, 21(20), 6896. https://doi.org/10.3390/s21206896
King, C., & Jaafar, H. (2015). Rapid assessment of the water–energy–food–climate nexus in six selected basins of North Africa and West Asia undergoing transitions and scarcity threats. International Journal of Water Resources Development, 31(3), 343–359. https://doi.org/10.1080/07900627.2015.1026436
Kuswanto, H., Hibatullah, F., & Soedjono, E. S. (2019). Perception of weather and seasonal drought forecasts and its impact on livelihood in East Nusa Tenggara, Indonesia. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02360
Kuswanto, H., & Naufal, A. (2019). Evaluation of performance of drought prediction in Indonesia based on TRMM and MERRA-2 using machine learning methods. MethodsX, 6, 1238–1251. https://doi.org/10.1016/j.mex.2019.05.029
Le Comte, D. (1994). Highlights Around the World. Weatherwise, 47(1), 23–26. https://doi.org/10.1080/00431672.1994.9925303
Li, Z., Zhou, Y., Li, K., Xiao, H., & Cai, Y. (2021). The spatial effects of city-level water-energy nexus: A case study of Hebei Province, China. Journal of Cleaner Production, 310, 127497. https://doi.org/10.1016/j.jclepro.2021.127497
Liang, Y., Li, Y., Liang, S., Feng, C., Xu, L., Qi, J., Yang, X., Wang, Y., Zhang, C., Li, K., Li, H., & Yang, Z. (2020). Quantifying Direct and Indirect Spatial Food–Energy–Water (FEW) Nexus in China. Environmental Science & Technology, 54(16), 9791–9803. https://doi.org/10.1021/acs.est.9b06548
Lloyd-Hughes, B. (2014). The impracticality of a universal drought definition. Theoretical and Applied Climatology, 117(3–4), 607–611. https://doi.org/10.1007/s00704-013-1025-7
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41–55. https://doi.org/10.1007/s00477-007-0194-2
Miyan, M. A. (2015). Droughts in Asian Least Developed Countries: Vulnerability and sustainability. Weather and Climate Extremes, 7, 8–23. https://doi.org/10.1016/j.wace.2014.06.003
MOHAN, S., & RANGACHARYA, N. C. V. (1991). A modified method for drought identification. Hydrological Sciences Journal, 36(1), 11–21. https://doi.org/10.1080/02626669109492481
Mursidi, A., Ayu, D., & Sari, P. (2017). Management of Drought Disaster in Indonesia. Jurnal Terapan Manajemen Dan Bisnis, 3, 2477–5282.
Nardelli, P. H. J. (2018). Construction-deconstruction-reconstruction framework: A methodology for interdisciplinary research. In Cybernetics and Systems (pp. 544–545). Routledge.
Nelson, R., Howden, M., & Smith, M. S. (2008). Using adaptive governance to rethink the way science supports Australian drought policy. Environmental Science & Policy, 11(7), 588–601. https://doi.org/10.1016/j.envsci.2008.06.005
Núñez, J., Rivera, D., Oyarzún, R., & Arumí, J. L. (2014). On the use of Standardized Drought Indices under decadal climate variability: Critical assessment and drought policy implications. Journal of Hydrology, 517, 458–470. https://doi.org/10.1016/j.jhydrol.2014.05.038
Obasi, G. O. P. (1994). WMO’s Role in the International Decade for Natural Disaster Reduction. Bulletin of the American Meteorological Society, 75(9), 1655–1661. https://doi.org/10.1175/1520-0477(1994)075<1655:WRITID>2.0.CO;2
Raikes, J., Smith, T. F., Jacobson, C., & Baldwin, C. (2019). Pre-disaster planning and preparedness for floods and droughts: A systematic review. International Journal of Disaster Risk Reduction, 38, 101207. https://doi.org/10.1016/j.ijdrr.2019.101207
Riebsame, W. E. (2019). Drought and natural resources management in the United States: impacts and implications of the 1987-89 drought. Routledge.
Rodysill, J. R., Russell, J. M., Crausbay, S. D., Bijaksana, S., Vuille, M., Edwards, R. L., & Cheng, H. (2013). A severe drought during the last millennium in East Java, Indonesia. Quaternary Science Reviews, 80, 102–111. https://doi.org/10.1016/j.quascirev.2013.09.005
Rozaki, Z. (2021). Food security challenges and opportunities in indonesia post COVID-19. In Advances in Food Security and Sustainability (Vol. 6, pp. 119–168). Elsevier Ltd. https://doi.org/10.1016/bs.af2s.2021.07.002
Saji, N. H. , Goswami, B. N. , Vinayachandran, P. N. , & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.
Sen, Z. (1980). Statistical Analysis of Hydrologic Critical Droughts. Journal of the Hydraulics Division, 106(1), 99–115. https://doi.org/10.1061/JYCEAJ.0005362
Siswanto, S., Wardani, K. K., Purbantoro, B., Rustanto, A., Zulkarnain, F., Anggraheni, E., Dewanti, R., Nurlambang, T., & Dimyati, M. (2022). Satellite-based meteorological drought indicator to support food security in Java Island. PLOS ONE, 17(6), e0260982. https://doi.org/10.1371/journal.pone.0260982
Smakhtin, V., & Hughes, D. (2007). Automated estimation and analyses of meteorological drought characteristics from monthly rainfall data. Environmental Modelling & Software, 22(6), 880–890. https://doi.org/10.1016/j.envsoft.2006.05.013
Smith, A. B., & Matthews, J. L. (2015). Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Natural Hazards, 77(3), 1829–1851. https://doi.org/10.1007/s11069-015-1678-x
Stakhiv, E. Z., Werick, W., & Brumbaugh, R. W. (2016). Evolution of drought management policies and practices in the United States. Water Policy, 18(S2), 122–152. https://doi.org/10.2166/wp.2016.017
Stone, R. C. (2014). Constructing a framework for national drought policy: The way forward – The way Australia developed and implemented the national drought policy. Weather and Climate Extremes, 3, 117–125. https://doi.org/10.1016/j.wace.2014.02.001
Sun, C., Yan, X., & Zhao, L. (2021). Coupling efficiency measurement and spatial correlation characteristic of water–energy–food nexus in China. Resources, Conservation and Recycling, 164, 105151. https://doi.org/10.1016/j.resconrec.2020.105151
Ummenhofer, C. C., Sen Gupta, A., England, M. H., & Reason, C. J. C. (2009). Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall. Journal of Climate, 22(4), 993–1013. https://doi.org/10.1175/2008JCLI2493.1
Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resources Research, 28(9), 2451–2458. https://doi.org/10.1029/92WR01007
Wang, J., Shao, W., & Kim, J. (2020). Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures. Chaos, Solitons & Fractals, 136, 109896. https://doi.org/10.1016/j.chaos.2020.109896
Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. Source: MIS Quarterly, 26(2), xiii–xxiii.
Webster, K. E., Kratz, T. K., Bowser, C. J., Magnuson, J. J., & Rose, W. J. (1996). The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnology and Oceanography, 41(5), 977–984. https://doi.org/10.4319/lo.1996.41.5.0977
Whitehead, M. (2011). State, science and the skies: governmentalities of the British atmosphere (Vol. 64). John Wiley & Sons.
Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the Drought Phenomenon: The Role of Definitions. Water International, 10(3), 111–120. https://doi.org/10.1080/02508068508686328
Wilhite, D. A., & Glantz, M. H. (1987). CHAPfER2 UNDERSTANDING THE DROUGHT PHENOMENON: THE ROLE OF DEFINITIONS.
Wilhite, D. A., Hayes, M. J., Knutson, C., & Smith, K. H. (2000). PLANNING FOR DROUGHT: MOVING FROM CRISIS TO RISK MANAGEMENT. Journal of the American Water Resources Association, 36(4), 697–710. https://doi.org/10.1111/j.1752-1688.2000.tb04299.x
Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002
Wu, J., Chen, X., Love, C. A., Yao, H., Chen, X., & AghaKouchak, A. (2020). Determination of water required to recover from hydrological drought: Perspective from drought propagation and non-standardized indices. Journal of Hydrology, 590, 125227. https://doi.org/10.1016/j.jhydrol.2020.125227
Zarei, A. R., Mahmoudi, M. R., & Moghimi, M. M. (2023). Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought. Natural Hazards, 115(1), 923–946. https://doi.org/10.1007/s11069-022-05579-2
Zecharias, Y. B., & Brutsaert, W. (1988). The influence of basin morphology on groundwater outflow. Water Resources Research, 24(10), 1645–1650. https://doi.org/10.1029/WR024i010p01645
Zelenhasić, E., & Salvai, A. (1987). A method of streamflow drought analysis. Water Resources Research, 23(1), 156–168. https://doi.org/10.1029/WR023i001p00156
Zhou, Y., Zhou, P., Jin, J., Wu, C., Cui, Y., Zhang, Y., & Tong, F. (2022). Drought identification based on Palmer drought severity index and return period analysis of drought characteristics in Huaibei Plain China. Environmental Research, 212, 113163. https://doi.org/10.1016/j.envres.2022.113163
DOI: https://doi.org/10.22146/ijg.92812
Article Metrics
Abstract views : 285 | views : 54Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Triarko Nurlambang, Ratih Dewanti Dimyati, Babag Purbantoro, Nurul Sri Rahatiningtyas, Dewanti Aisyah Legowo, Ahmad Fakhruddin, Muhammad Dimyati, Grizzly Pradipta Singhasana Enshito
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC