Assessing the Reliability of Satellite-Derived Evapotranspiration Data Using Numerical Modified Penman Method at Citarum Watershed

https://doi.org/10.22146/ijg.77725

Evi Anggraheni(1*), Faris Zulkarnain(2), Pranita Giardini(3), Kintan Maulidina(4), Babag Purbantoro(5), Raisya Afifah(6), Anang Muchlis(7), Siswanto Siswanto(8), Andry Rustanto(9), Muhammad Dimyati(10), Ahmad Zubair(11), Triarko Nurlambang(12), Ratih Dewanti(13), Iqbal Putut Ash-Shidiq(14), Irma Susanti(15)

(1) Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
(2) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(3) Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
(4) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(5) Remote Sensing Technology and Data Center, National Research and Innovation Agency, Indonesia
(6) Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
(7) Citarum River Basin Agency, Ministry of Public Work and Housing, Indonesia
(8) Meteorological, Climatological, and Geophysical Agency, Indonesia
(9) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(10) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(11) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(12) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(13) Remote Sensing Technology and Data Center, National Research and Innovation Agency, Indonesia
(14) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(15) Department of Geography, Faculty of Mathematics and Natural Science, Universitas Indonesia, Indonesia
(*) Corresponding Author

Abstract


Evapotranspiration is an essential part of water availability analysis and crop water needs that are useful to estimate irrigation water demand. Since discharge measurement stations are limited, the analysis of water availability is the most important part of water management planning. Citarum watershed is the biggest watershed in West Java, supplies raw water to Jakarta, the capital city of Indonesia. Modified Penman is the common equation to analyze evapotranspiration, which was developed by Food and Agriculture Organization (FAO) and modified for tropical areas. Evapotranspiration is one term of the water balance equation. To determine water losses, it is necessary to solve this equation. Another source of evapotranspiration data is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite's standard product, MOD16A2. In order to used the evapotranspiration satelilite data to fullfill the lack of groud station data, the reliability of satelite data is needed. The objective of this study is to compares and analyzes the reliability of satellite evapotranspiration potential images with the numerical Modified Penman method at Citarum Watershed. Modified Penman is one of several methods that calculate the evapotranspiration potential based on climate data. MOD16A2 was used for simulation data, and Modified Penman was used for baseline data. The reliability of the two simulations was analyzed by the skewness percentage of each pixel and period. The distribution of percent skewness indicates the performance of satellite evapotranspiration on the Modified Penman that represents the actual condition. The sensitivity of satellites is greatly affected by local weather conditions.


Keywords


Evapotranspiration; Satellite MOD16A2; Water Availability; Modified Penman, Citarum Watershed

Full Text:

PDF


References

Aldrian, E., & Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 1435–1452. https://doi.org/10.1002/joc.950

Anggraheni, E., Sutjiningsih, D., & Widyoko, J. (2018). Rainfall-runoff modelling calibration on the watershed with minimum stream gage network data. International Journal of Engineering and Technology(UAE), 7, 121–124. https://doi.org/10.14419/ijet.v7i3.29.18538

Aprialdi, D., Haiban, M. I., Kløve, B., & Torabi Haghighi, A. (2019). Irrigation Requirement for Eucalyptus pellita during Initial Growth. Water, 11(10), 1972. https://doi.org/10.3390/w11101972

Batchelor, C. H. (1984). The accuracy of evapotranspiration estimated with the FAO modified penman equation. Irrigation Science, 5(4), 223–233. https://doi.org/10.1007/BF00258176

Boer, R., Dasanto, B., Perdinan, , & Marthinus, D. (2012). Hydrologic Balance of Citarum Watershed under Current and Future Climate (pp. 43–59). https://doi.org/10.1007/978-3-642-22266-5_3

Cleugh, H., Leuning, R., Mu, Q., & Running, S. (2007). Regional evaporation from flux tower and MODIS satellite data. Remote Sensing of Environment, 106, 285–304. https://doi.org/10.1016/j.rse.2006.07.007

D’Arrigo, R., Abram, N., Ummenhofer, C., Palmer, J., & Mudelsee, M. (2011). Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics. Climate Dynamics, 36(3), 451–462. https://doi.org/10.1007/s00382-009-0717-2

Degano, M. F., Rivas, R. E., Carmona, F., Niclòs, R., & Sánchez, J. M. (2021). Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. The Egyptian Journal of Remote Sensing and Space Science, 24(2), 319–328. https://doi.org/https://doi.org/10.1016/j.ejrs.2020.08.004

Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to Enhance Societal Readiness for El Niño’s Impacts. International Journal of Disaster Risk Science, 11(3), 394–403. https://doi.org/10.1007/s13753-020-00275-w

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/https://doi.org/10.1016/j.rse.2017.06.031

Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of the Hydraulics, 87, 107–120.

He, M., Kimball, J., Yi, Y., Running, S., Guan, K., Moreno, A., Wu, X., & Maneta, M. (2019). Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework. Remote Sensing of Environment, 230. https://doi.org/10.1016/j.rse.2019.05.020

Hengsdijk, H., van der Krogt, W. N. M., Verhaeghe, R. J., & Bindraban, P. S. (2006). Consequences of supply and demand management options for integrated water resources management in the Jabotabek‐Citarum region, Indonesia. International Journal of River Basin Management, 4(4), 283–290. https://doi.org/10.1080/15715124.2006.9635297

Justice, C. O., Vermote, E., Townshend, J., Defries, R., Roy, D., Hall, D. K., Salomonson, V. V, Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R., Wan, Z. M., Huete, A., Van Leeuwen, W., Wolfe, R., & Barnsley, M. J. (1997). The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE T Geosci Remote, 36, 1228–1249.

Katul, G. G., Oren, R., Manzoni, S., Higgins, C., & Parlange, M. B. (2012). EVAPOTRANSPIRATION: A PROCESS DRIVING MASS TRANSPORT AND ENERGY EXCHANGE IN THE SOIL-PLANT-ATMOSPHERE-CLIMATE SYSTEM. https://doi.org/10.1029/2011RG000366

Konukcu, F. (2007). Modification of the Penman method for computing bare soil evaporation. Hydrological Processes, 21, 3627–3634. https://doi.org/10.1002/hyp.6553

Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81–96. https://doi.org/10.1016/j.isprsjprs.2021.05.018

Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., & Tu, K. (2008). A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation. 44, 10419. https://doi.org/10.1029/2007WR006562

Li, Z., Shen, H., Weng, Q., Zhang, Y., Dou, P., & Zhang, L. (2022). Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 188, pp. 89–108). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2022.03.020

Loucks, D. P. (2000). Sustainable Water Resources Management. Water International, 25(1), 3–10. https://doi.org/10.1080/02508060008686793

LuoID, P., Kang, S., Zhou, M., Lyu, J., Aisyah, S., Binaya, M., Krishna Regmi, R., & Nover, D. (2019). Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. https://doi.org/10.1371/journal.pone.0219009

Marques, T., Coll Delgado, R., Carvalho, D., Teodoro, P., Almeida, C., Silva Junior, C. A., Bispo, E., & da Silva Júnior, L. A. (2020). Assessment of evapotranspiration estimates based on surface and satellite data and its relationship with El Niño-Southern Oscillation in the Rio de Janeiro State. Environmental Monitoring and Assessment, 192, 1–15. https://doi.org/10.1007/s10661-020-08421-z

Miranda, R. de Q., Galvíncio, J. D., Moura, M. S. B. de, Jones, C. A., & Srinivasan, R. (2017). Reliability of MODIS Evapotranspiration Products for Heterogeneous Dry Forest: A Study Case of Caatinga. Advances in Meteorology, 2017, 1–14. https://doi.org/10.1155/2017/9314801

Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519–536. https://doi.org/https://doi.org/10.1016/j.rse.2007.04.015

Mu, Q., Zhao, M., & Running, S. (2013). Algorithm Theoretical Basis Document: MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) Collection 5. NASA Headquarters.

Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800. https://doi.org/https://doi.org/10.1016/j.rse.2011.02.019

Nusantara, D. A. D., & Nadiar, F. (2020). Using ANN to Evaluate the Climate Data that High Affect on Calculate Daily Potential Evapotranspiration with Modified-Penman Method in the Tropical Regions. Journal of Physics: Conference Series, 1569(4). https://doi.org/10.1088/1742-6596/1569/4/042028

Pramudya, Y., Onishi, T., Senge, M., Hiramatsu, K., Nur, P., & Komariah, K. (2019). Evaluation of recent drought conditions by standardized precipitation index and potential evapotranspiration over Indonesia. Paddy and Water Environment, 17. https://doi.org/10.1007/s10333-019-00728-z

Sahu, N., Behera, S. K., Yamashiki, Y., Takara, K., & Yamagata, T. (2012). IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia. Climate Dynamics, 39(7), 1673–1680. https://doi.org/10.1007/s00382-011-1158-2

Shekar, N. C. S., & Hemalatha, H. N. (2021). Performance Comparison of Penman–Monteith and Priestley–Taylor Models Using MOD16A2 Remote Sensing Product. Pure and Applied Geophysics, 178(8), 3153–3167. https://doi.org/10.1007/s00024-021-02780-5

Siswanto, S. Y., & Francés, F. (2019). How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences, 78(17), 550. https://doi.org/10.1007/s12665-019-8561-0

Sriwongsitanon, N., Suwawong, T., Thianpopirug, S., Williams, J., Jia, L., & Bastiaanssen, W. (2020). Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. Journal of Hydrology: Regional Studies, 30, 100709. https://doi.org/https://doi.org/10.1016/j.ejrh.2020.100709

Suwanlertcharoen, T., Chaturabul, T., Supriyasilp, T., & Pongput, K. (2023). Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water (Switzerland), 15(3). https://doi.org/10.3390/w15030450

Tait, A., & Woods, R. (2007). Spatial Interpolation of Daily Potential Evapotranspiration for New Zealand Using a Spline Model. Journal of Hydrometeorology, 8(3), 430–438. https://doi.org/10.1175/JHM572.1

Thomas, A. (2000). SPATIAL AND TEMPORAL CHARACTERISTICS OF POTENTIAL EVAPOTRANSPIRATION TRENDS OVER CHINA. In INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol (Vol. 20).

Tsouni, A., Kontoes, C., Koutsoyiannis, D., Elias, P., & Mamassis, N. (2008). Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. Sensors, 8(6), 3586–3600. https://doi.org/10.3390/s8063586

Widyanto, S. A., Hidayatno, A., & Widodo, A. (2014). Simulation of Automated Irrigation ON-OFF Controller Based on Evapotranspiration Analysis.

Wu, B., Jiang, L., Yan, N., Perry, C., & Zeng, H. (2014). Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China. Agricultural Water Management, 145, 145–153. https://doi.org/10.1016/j.agwat.2013.09.021

Yulianto, F., Maulana, T., & Khomarudin, M. R. (2019). Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model, in the upstream Citarum Watershed, West Java, Indonesia. International Journal of Digital Earth, 12(10), 1151–1176. https://doi.org/10.1080/17538947.2018.1497098

Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. In Wiley Interdisciplinary Reviews: Water (Vol. 3, Issue 6, pp. 834–853). John Wiley and Sons Inc. https://doi.org/10.1002/wat2.1168



DOI: https://doi.org/10.22146/ijg.77725

Article Metrics

Abstract views : 1408 | views : 798

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Evi Anggraheni, Faris Zulkarnain, Pranita Giardini, Kintan Maulidina, Babag Purbantoro, Raisya Afifah, Anang Muchlis, Siswanto Siswanto, Andry Rustanto, Muhammad Dimyati, Ahmad Zubair, Triarko Nurlambang, Ratih Dewanti, Iqbal Putut Ash-Shidiq, Irma Susanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC