30-Year Spatial-Temporal Analysis of Air Surface Temperature as Climate Change Mitigation
Adi Wibowo(1*), Tia Pramudyasari(2), Suko Prayitno Adi(3), Ratna Saraswati(4), Iqbal Putut Ash Shidiq(5)
(1) Department Geography, Faculty Mathematics and Natural Sciences,Universitas Indonesia
(2) Department Geography and Indonesian Agency for Meteorological, Climatological, and Geophysics, Indonesia
(3) Indonesian Agency for Meteorological, Climatological, and Geophysics, Indonesia
(4) Department Geography, Faculty Mathematics and Natural Sciences,Universitas Indonesia
(5) Department Geography, Faculty Mathematics and Natural Sciences,Universitas Indonesia
(*) Corresponding Author
Abstract
Natural and anthropogenic factors, such as volcanic eruptions and land use, are indirect causes of changes in the micro-scale climate. Over the past 30 years, climate change has been detected with increased air surface temperature (AST) above 30.00C, a phenomenon of Urban Heat Island. Therefore, this study aimed to create a spatial model to see changes in AST in Bandar Lampung City from1990 to 2020. The spatial and temporal analysis uses Landsat data to produce land surface temperature (LST) and AST models. The results showed a temperature rise in the LST area, which tends to be the northern part of Bandar Lampung City, by 25.0oC and above for 30 years. Compare LST and AST from two stations between 30 years is 5.00C. In 1990, the LST concentrated on the spatial distribution of the AST model with a temperature above 30.00C, while in 2020, it diffused to the northern part of Bandar Lampung City. The results concluded that the air temperature in the city has warmed up to 0.46OC (+10C), which is in line with the findings of IPPC and various world cities. It is also in occurrence with the UHI phenomenon since 2014 that climate change is part of mitigation.
Keywords
Full Text:
PDFReferences
Adulkongkaew, T., Satapanajaru, T., Charoenhirunyingyos, S. & Singhirunnusorn, W. (2020). Effect of land cover composition and building configuration on land surface temperature in an urban[1]sprawl city, a case study in Bangkok Metropolitan Area, Thailand. Heliyon, 6, e0448.
Aldrian, E., Karmini, M., & Budiman. (2011). Adaptasi dan Mitigasi Perubahan Iklim di Indonesia. Pusat Perubahan Iklim dan Kualitas Udara Kedeputian Bidang Klimatologi Badan Meteorologi, Klimatologi, dan Geofisika (BMKG)
Bathiany, S., Dakos, V., Scheffer, M., & Lenton, T. M. (2018). Climate models predict increasing temperature variability in poor countries. Science advances, 4(5), eaar5809.
Berg, E. & Kucharik, C. (2020). The Dynamic Relationship between Air and Land Surface Temperature within the Madison, Wisconsin Urban Heat Island. Remote Sens., 14, 165.
BPS Bandar Lampung City, (2020), Bandar Lamung dalm Angka
Dong, S., Yan, X., & Xiong, Z. (2013). Varying responses in mean surface air temperature from land use/cover change in different seasons over northern China. Acta Ecol. Sin., 33, 167–71.
Dorigon, L. P., & Amorim, M. C. C. T. (2019). Spatial Modelling of An Urban Brazilian Heat Island in A Tropical Continent Climate. Urban Climate, 28, 100461. https://doi.org/10.1016/j.uclim.2019.100461
Fabrizi, R., Bonafoni, S., & Biondi, R. (2010). Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome. Remote Sens., 2, 1400–1415. https://doi.org/10.3390/rs2051400
Fauzan, N. F., Wibowo, A., & Shidiq, I. P. A. (2022). Spatial analysis of air surface temperature using M-AST model in a complex sub-urban area. In IOP Conference Series: Earth and Environmental Science, 986(1), 012070.
Fitriani, A. N., Dewi, K., & Tursilowati, L. (2019). Identification Of Urban Heat Island Spreading To Concentration Of NO 2, O3, and PM 10 Pollutant In Dki Jakarta. Journal of Urban and Environmental Engineering, 13(1), 125-133.
Harmantyo, D. (2008). Climates Role In Changing The Face Of The Earth And The Spatial Conflict Problems: A Preliminary Study On The Cimanuk Watershed. Indonesian Journal of Geography, 40(2), 187-195.
Hermon, D. (2014). Impacts of land cover change on climate trend in Padang Indonesia. Indonesian Journal of Geography, 46(2), 138-142.
Ichinose T, Matsumoto F, Kataoka K (2008) Urban thermal environment and it is mitigation through the urban planning process. Geogr Rep Tokyo Metrop Univ 43:33–40.
Kim, Y. H., & Baik, J. J. (2005). Spatial and temporal structure of the urban heat island in Seoul. J Appl Meteorol, 44(5), 591–605.
Li K., & Yu, Z. (2008). Comparative and combinative study of urban heat island in wuhan city with remote sensing and cfd simulation. Sensors, 8(10), 6692–6703.
Memon, R. A., Leung, D. Y., & Liu, C.H. (2009). An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos Res, 94(3), 491–500.
Mukhtar, Z., Haq, F., Naqvi, S., & Afreen, M. (2021). Climatic Anomalies and Glacial Dynamics in the Himalayan Region Northern Pakistan: A Spatial-Statistical Approach. Indonesian Journal of Geography, 53(2), 216-225.
Ningrum, W., & Narulita, I. (2018). Deteksi Perubahan Suhu Permukaan Menggunakan Data Satelit Landsat Multi-Waktu. Jurnal Teknologi Lingkungan, 19(2), 145-154.
Nazarudin, L. (2021). Deteksi Efek Pulau Panas Perkotaan Di Kota Pekanbaru: Kajian Menggunakan Trend Suhu Dan DTR. Jurnal Widya Climago, 3(2), 1-9.
Oke, T. R. (1987). Boundary-Layer Climates, 2nd ed. Methuen and Co.: New York, NY, USA, 262–303.
Olsson, T., Jakkila, J., Veijalainen, N., Backman, L., Kaurola, J., Vehviläinen, B. (2015). Impacts of climate change on temperature, precipitation and hydrology in Finland-studies using bias-corrected Regional Climate Model data. Hydrol Earth Syst Sci., 19, 3217–3238.
Priyankara, P., Ranagalage, M., Dissanayake, D. M. S. L. B., Morimoto, T., & Murayama, Y. (2019). Spatial process of surface urban heat island in rapidly growing Seoul Metropolitan area for sustainable urban planning using Landsat data (1996–2017). Climate, 7(9), 110.
Ruminta, H., & Nurmala, T. (2018). Indikasi perubahan iklim dan dampaknya terhadap produksi padi di Indonesia (Studi kasus: Sumatera Selatan dan Malang Raya). Jurnal Agro, 5(1), 48-60.
Samson, A. O., & Olorunnimbe, R. O. (2011). Conceptualization of urbanization structure and climate change in Lagos Nigeria. Indonesian Journal of Geography, 43(2), 181-194.
Sobirin & Fatimah, R. N. (2015). Urban Heat Island Kota Surabaya. Depok, Departemen Geografi, FMIPA – Universitas Indonesia.
Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environmental an institutional campus in the summer. Build Environ 66, 158–172.
Streutker, D. R., (2002). A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sensing, 23(13), 2595–2608.
Suarma, U., Hizbaron, D. R., Sudibyakto, S., & Nurjani, E. (2018). Participatory implementation within climate change-related policies in urbanized areas of Indonesia. Indonesian Journal of Geography, 50(2), 121-132.
Suzuki, C. (2008). Improvements of heats Island monitoring network in Tokyo. Geogr Rep Tokyo Univ, 43, 33–40.
Tursilowati, L., Sumantyo, J. T. S., Kuze, H., Adiningsih, E. S. (2012). Relationship between urban heat island phenomenon and land use/land cover changes in Jakarta- Indonesia. J Emerg Trends Eng Appl Sci, 3(4), 645–653.
Wang, L., Tian, F., Wang, X., Yang, Y., & Wei, Z. (2020). Attribution of the land surface temperature response to land-use conversions from bare land. Glob. Planet. Change 193 103268.
Wibowo, A. (2005). Evaluasi Daya Dukung LIngkungan Hidup DKI Jakarta, Tesis Magister Ilmu Lingkungan, Pasca Sarjana Universitas Indonesia.
Wibowo, A., Kuswantoro, Ardiansyah, Rustanto, A., & Shidiq, I. P. A. (2016). Spatial, temporal analysis of urban heat hazard in Tangerang City. IOP Conference Series: Earth and Environmental Science, 47(1), [012039]. https://doi.org/10.1088/1755-1315/47/1/012039
Wibowo, A., Semedi, J. M., & Salleh, K. O. (2017). Spatial, temporal analysis of urban heat hazard on education Area (University of Indonesia). The Indonesian Journal of Geography, 49(1), 1-10.
Wibowo, A., & Salleh, K. O. (2018). Landscape features and potential heat hazard threat: a spatial-temporal analysis of two urban universities. Natural Hazards, 92(3), 1267-1286.
Wibowo, A., & Salleh K. O. (2018). Land Cover Types and Their Effect on the Urban Heat Signature of University Campuses using Remote Sensing. International Journal of Technology, 9(3), 479-490.
Wibowo, A., Yusoff, M. M., & Salleh, K. O. (2020). Monitoring urban heat signature and profiles of a localized urban environment in the University of Malaya. IOP Conf. Ser. Earth Environ. Sci. 481
WMO. (2009). Guidelines on analysis of extremes in changing climate support informed decisions for adaptation. World Meteorological Organization.
WMO. (2017). Statement on the State of the Global Climate in 2016, WMO No. 1189
WMO. (2017_a). WMO Guidelines on the Calculation of Climate Normals. Juli 31, 2021 https://library.wmo.int/doc_num.php?explnum_id=4166
WMO. (2018). Guide to climatological practices. Switzerland, Geneva
Wong, N., H., & Yu, C. (2005) Study of green areas and urban heat island in a tropical city. Habitat Int 29(3):547–558
Xiao, H., & Weng, Q. (2007). The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manage., 85, 245–57.
Zhang, Y., Su, Z., Li, G., Zhuo, Y., & Xu, Z. (2018). Spatial-temporal evolution of sustainable urbanization development: A perspective of the coupling coordination development based on population, industry, and built-up land spatial agglomeration. Sustain., 10, 1–20.
DOI: https://doi.org/10.22146/ijg.73460
Article Metrics
Abstract views : 2463 | views : 1460Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Adi Wibowo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC