Association Study Between Thermal Front Phenomena and Bali Sardinella Fishing Areas in Bali Strait

https://doi.org/10.22146/ijg.51668

Argo Galih Suhadha(1*), Andi Ibrahim(2)

(1) Remote Sensing Application Center, Indonesian National Institute of Aeronautics and Space (LAPAN), Indonesia.
(2) Remote Sensing Application Center, Indonesian National Institute of Aeronautics and Space (LAPAN), Indonesia.
(*) Corresponding Author

Abstract


Thermal front has been widely used as a parameter for determining fishing zones. Tis study aimed to  determine  the  thermal  front  distribution  and  to  analyze  its  association  with  the  Bali  Sardinella  fishing zones  in  the  Bali  Strait.  Termal  front  generated  using  sea  surface  temperature  (SST)  from  Aqua  MODIS imagery. Meanwhile, the fishing point data of Bali Sardinella were collected to validate our analysis results. Te data were analyzed into Spatio-temporal information. Te main facts that stand out are that the thermal front  was  predominantly  found  in  the  peak  of  first (April)  and  second  (September)  transitional  season, which was the peak season for the thermal front to occur in a year. Te least of the thermal front occurred in the  South-west  monsoon.  Te  linear  relationship  was found  when  the  peak  of  thermal  front  occurrence compared to the number of catch yields. Based on matching distance analysis, the maximum distance used (twenty  kilometres  buffer)  show  36  matching  points from  101  data  compared  or  at  range  35.6%.  In conclusion, there is a linear relationship between the thermal front parameter and catch yield. It is still used to predict the fishing zone, even though the correlation is not significantly found.

Keywords


Bali Sardinella; Bali Strait; Fishing Areas; SST; Thermal Front

Full Text:

PDF


References

American Meteorological Society Glossary of Meteorology: Front (2012). Available at: http://glossary.ametsoc.org/wiki/Fronts, last access: 8 July 2020.

Burhanuddin, M. H., Martosewojo, S., & Moeljanto, R. (1984). Sumberdaya Ikan Lemuru. Proyek Studi Sumber Daya Alam Indonesia. Studi Potensi Sumber Daya Hayati Ikan. Lembaga Oseanografi Nasional-LIPI. Jakarta, 70.

Bray, N. A., Hautala, S., Chong, J., & Pariwono, J. (1996). Large-scale sea level, thermocline, and wind variations in the Indonesian throughflow region. Journal of Geophysical Research C: Oceans, 101(C5), 12239–12254. https://doi.org/10.1029/96JC00080.

Cayula, J.-F., & Cornillon, P. (1995). Multi-Image Edge Detection for SST Images. In Journal of Atmospheric and Oceanic Technology (Vol. 12, Issue 4, pp. 821–829). https://doi.org/10.1175/1520-0426(1995)012<0821:miedfs>2.0.co;2.

Cayula, J. F., & Cornillon, P. (1992). Edge detection algorithm for SST images. Journal of Atmospheric & Oceanic Technology, 9(1), 67–80. https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.

Chang, Y., & Cornillon, P. (2015). A comparison of satellite-derived sea surface temperature fronts using two edge detection algorithms. Deep-Sea Research Part II: Topical Studies in Oceanography, 119, 40–47. https://doi.org/10.1016/j.dsr2.2013.12.001.

FAO. (2001). FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of Thr Western Central Pacific, 1, 2831–2836.

Gordon, A. L. (2005). Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(SPL.ISS. 4), 15–27. https://doi.org/10.5670/oceanog.2005.01.

Hamzah, R., Prayogo, T., & Harsanugraha, W. K. (2014). Identifikasi Thermal Front dari Data satelit Terra / Aqua MODIS Menggunakan Metode Single Image Edge Detection ( SIED )( Studi Kasus : Perairan Utara dan Selatan Pulau Jawa).

Hamzah, R., Prayogo, T., & Marpaung, S. (2016). Metode Penentuan Titik Koordinat Zona Potensi Penangkapan Ikan Pelagis Berdasarkan Hasil Deteksi Termal Front Suhu Permukaan Laut.

Hanintyo, R., Hadianti, S., Mahardhika, R. M. P., & Aldino, J. S. (2015). Sebaran Musiman Kejadian Thermal Front Berdasarkan Citra Aqua-. 523–635.

Hendiarti, N., Siegel, H., & Ohde, T. (2004). Investigation of different coastal processes in Indonesian waters using

SeaWiFS data. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(1–3), 85–97. https://doi.org/10.1016/j.dsr2.2003.10.003.

Jatisworo, D., & Murdimanto, A. (2013). Identifikasi thermal front di Selat Makassar dan Laut Banda. Simposium Nasional Sains Geoinformasi III, 1962, 226–232.

Jing, Z., Qi, Y., Fox-Kemper, B., Du, Y., & Lian, S. (2016). Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. Journal of Geophysical Research: Oceans, 121(3), 1914–1930. https://doi.org/10.1002/2015JC011222.

Kirches, G., Paperin, M., Klein, H., Brockmann, C., & Stelzer, K. (2016). Remote Sensing of Environment GRADHIST — A method for detection and analysis of oceanic fronts from remote sensing data. Remote Sensing of Environment, 181, 264–280. https://doi.org/10.1016/j.rse.2016.04.009.

Kusuma, D. W., Murdimanto, A., Aden, L. Y., Sukresno, B., Jatisworo, D., & Hanintyo, R. (2017). Sea Surface Temperature Dynamics in Indonesia. IOP Conference Series: Earth and Environmental Science, 98(1). https://doi.org/10.1088/1755-1315/98/1/012038.

Kuswardani, R. T. D., & Qiao, F. (2014). Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java. Chinese Science Bulletin, 59(33), 4516–4523. https://doi.org/10.1007/s11434-014-0549-2.

Ohta, J., Yasukawa, K., Nozaki, T., Takaya, Y., Mimura, K., Fujinaga, K., Nakamura, K., Usui, Y., Kimura, J. I., Chang, Q., & Kato, Y. (2020). Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event. Scientific Reports, 10(1), 3–4. https://doi.org/10.1038/s41598-020-66835-8

Pertami, N. D., Rahardjo, M. F., Damar, A., Nurjaya, I. W., Kelautan, F., Udayana, U., Raya, J., Unud, K., Jimbaran, B., Dramaga, K. I. P. B., & Agatis, J. (2020). ( Lemuru fish , the belle of the disappearing Bali Strait fisheries ) Bali. 4(April), 1–7.

Pet, J. S., Van Densen, W. L. T., Machiels, M. A. M., Sukkel, M., Setyohadi, D., & Tumuljadi, A. (1997). Catch, effort and sampling strategies in the highly variable sardine fisheries around East Java, Indonesia. Fisheries Research, 31(1–2), 121–137. https://doi.org/10.1016/S0165-7836(97)00007-6.

Podestá, G. P., Browder, J. A., & Hoey, J. J. (1993). Exploring the association between swordfish catch rates and thermal fronts on U.S. longline grounds in the western North Atlantic. Continental Shelf Research, 13(2–3), 253–277. https://doi.org/10.1016/0278-4343(93)90109-B.

Republik Indonesia, M. K. dan P. (2014). Peraturan Menteri Kelautan dan Perikanan Republik Indonesia No.18/PERMEN-KP/2014 Tentang Wilayah Pengelolaan Perikanan Negara Republi Indonesia. Peraturan Menteri.

Robinson, I. (2006). Chapter 6 SATELLITE MEASUREMENTS FOR OPERATIONAL OCEAN MODELS. 147–189.

Setiawan, A. N., Dhahiyat, Y., & Purba, N. P. (2013). Variasi sebaran suhu dan klorofil-a akibat pengaruh Arlindo terhadap distribusi ikan cakalang di Selat Lombok Variation of temperature and chlorophyll-a due toIndonesian throughflow on skipjack distribution in Lombok Strait. 2(2), 58–69.

Shimada, T., Sakaida, F., Kawamura, H., & Okumura, T. (2005). Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. 98, 21–34. https://doi.org/10.1016/j.rse.2005.05.018

Susilo, E. (2015). Variabilitas Faktor Lingkungan Pada Habitat Ikan Lemuru Di Selat Bali Menggunakan Data Satelit Oseanografi Dan Pengukuran Insitu. Omni-Akuatika, 14(20), 13–22.

Ullman, D. S., & Cornillon, P. (2000). Evaluation of Front Detection Methods for Satellite-Derived SST Data Using In Situ Observations Evaluation of Front Detection Methods for Satellite-Derived SST Data Using In Situ Observations. December.

Valsala, V., & Maksyutov, S. (2010). A Short Surface Pathway of the Subsurface Indonesian Throughflow Water from the Java Coast Associated with Upwelling, Ekman Transport, and Subduction. International Journal of Oceanography, 2010(1), 1–15. https://doi.org/10.1155/2010/540783.

Wyrtki, K. (1961). NAGA REPORT Volume 2 Scientific Results. 195. https://doi.org/10.1001/archneur.1994.00540230067015.



DOI: https://doi.org/10.22146/ijg.51668

Article Metrics

Abstract views : 3605 | views : 2670

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Argo Galih Suhadha, Andi Ibrahim

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC