Klasifikasi Gerakan Jari Tangan Berdasarkan Sinyal Electromyogram Pada Lengan
Catur Atmaji(1*), Yusuf Waraqa Santoso(2), Roghib Muhammad Hujja(3), Andi Dharmawan(4), Danang Lelono(5)
(1) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(2) Prodi Elektronika dan Instrumentasi, DIKE, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(4) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(5) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] A. Junlasat, T. Kamolklang, P. Uthansakul, and M. Uthansakul, “Finger Movement Detection Based on Multiple EMG Positions,” 2019 11th International Conference on Information Technology and Electrical Engineering, ICITEE 2019, vol. 7, pp. 7–10, 2019, doi: 10.1109/ICITEED.2019.8929980.
[2] M. Barsotti, S. Dupan, I. Vujaklija, S. Došen, A. Frisoli, and D. Farina, “Online Finger Control Using High-Density EMG and Minimal Training Data for Robotic Applications,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 217–223, 2019, doi: 10.1109/LRA.2018.2885753.
[3] I. Yeo and H. C. Shin, “Novel Korean finger language recognition using EMG and motion sensors,” International Conference on Information Networking, vol. 2018-Janua, pp. 837–839, 2018, doi: 10.1109/ICOIN.2018.8343238.
[4] K. Rhee and H. C. Shin, “Finger motion recognition robust to diverse arm postures using EMG and accelerometer,” International Conference on Information Networking, vol. 2018-Janua, pp. 834–836, 2018, doi: 10.1109/ICOIN.2018.8343237.
[5] T. Hiyama, S. Sakurazawa, M. Toda, J. Akita, K. Kondo, and Y. Nakamura, “Motion estimation of five fingers using small concentric ring electrodes for measuring surface electromyography,” 2014 IEEE 3rd Global Conference on Consumer Electronics, GCCE 2014, no. 2001, pp. 376–380, 2015, doi: 10.1109/GCCE.2014.7031268.
[6] F. Zhang, L. Lin, L. Yang, and Y. Fu, “Design of an active and passive control system of hand exoskeleton for rehabilitation,” Applied Sciences (Switzerland), vol. 9, no. 11, 2019, doi: 10.3390/app9112291.
[7] N. Naseer, F. Ali, S. Ahmed, S. Iftikhar, R. A. Khan, and H. Nazeer, “EMG Based Control of Individual Fingers of Robotic Hand,” 3rd International Conference on Sustainable Information Engineering and Technology, SIET 2018 - Proceedings, pp. 6–9, 2018, doi: 10.1109/SIET.2018.8693177.
[8] N. Nazmi, M. A. A. Rahman, S. I. Yamamoto, S. A. Ahmad, H. Zamzuri, and S. A. Mazlan, “A review of classification techniques of EMG signals during isotonic and isometric contractions,” Sensors (Switzerland), vol. 16, no. 8, pp. 1–28, 2016, doi: 10.3390/s16081304.
[9] M. Li et al., “An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a rigid-soft combined mechanism,” Frontiers in Neurorobotics, vol. 13, no. May, pp. 1–13, 2019, doi: 10.3389/fnbot.2019.00034.
[10] C. Dai and X. Hu, “Finger Joint Angle Estimation Based on Motoneuron Discharge Activities,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 3, pp. 760–767, 2020, doi: 10.1109/JBHI.2019.2926307.
[11] S. Stapornchaisit, Y. Kim, A. Takagi, N. Yoshimura, and Y. Koike, “Finger angle estimation from array EMG system using linear regression model with independent component analysis,” Frontiers in Neurorobotics, vol. 13, no. September, pp. 1–12, 2019, doi: 10.3389/fnbot.2019.00075.
[12] X. Li, J. Fu, L. Xiong, Y. Shi, R. Davoodi, and Y. Li, “Identification of finger force and motion from forearm surface electromyography,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, vol. 2015-Octob, pp. 316–321, 2015, doi: 10.1109/MFI.2015.7295827.
[13] A. H. Al-timemy, S. Member, G. Bugmann, J. Escudero, and N. Outram, “Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 608–618, 2013, doi: 10.1109/JBHI.2013.2249590.
[14] C. Atmaji and Z. Y. Perwira, “Pengaruh Latar Belakang Warna pada Objek Gambar terhadap Hasil Ekstraksi Sinyal EEG,” Indonesian Journal of Electronics and Instrumentation System, vol. 7, no. 2, pp. 161–172, 2017.
[15] P. Liu, D. R. Brown, E. A. Clancy, F. Martel, and D. Rancourt, “EMG-force estimation for multiple fingers,” 2013 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2013, 2013, doi: 10.1109/SPMB.2013.6736772.
DOI: https://doi.org/10.22146/ijeis.60741
Article Metrics
Abstract views : 2097 | views : 1864Refbacks
- There are currently no refbacks.
Copyright (c) 2021 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1