Deteksi Daging Sapi Menggunakan Electronic Nose Berbasis Bidirectional Associative Memory
Eviyan Fajar Anggara(1*), Triyogatama Wahyu Widodo(2), Danang Lelono(3)
(1) 
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM
(*) Corresponding Author
Abstract
E-nose is an instrument used to detect odor. E-nose developed with Bidirectional Associative memory (BAM) algorithm has advantages in processing incomplete input data and noise. The purpose of the study was to implement the BAM algorithm to detect pure beef among samples of beef, pork, and mixed meat from aroma with e-nose.
Data processing of the sample reading results begins by performing the baseline manipulation process, then do difference and integral feature extraction for the data. The characteristic extraction data will be converted into bipolar matrix patterns (1 and -1) so that the threshold data is needed to be able to determine the feature extraction data to be bipolar. Data that have become bipolar matrices will be used as test and reference data in the program with cross validation testing to obtain the percentage of truth of meat detection using BAM based e-nose.
Detection of meat with BAM using integral feature extraction with bipolar the first way yields a 14,8% success percentage and the second way bipolar yields a 15,7% success rate. The extraction of characteristic difference with bipolar the first way yields a success percentage of 17,3% and the second way bipolar yields a success rate of 16,4%.Keywords
Full Text:
PDFReferences
[1]Harmini, R. W. Asmarantaka, J. Atmakusuma, “Model Dinamis Sistem Ketersediaan Daging Sapi Nasional,” Jurnal Ekonomi Pembangunan, vol. 12, no. 1, pp. 128-146, Juni 2011.
[2] E. Budianita, Jasril, L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi,” Jurnal Sains Teknologi dan Industri, vol. 12, no. 2, pp. 242-247, Juni 2015.
[3]L. Hilda, “Analisis Kandungan Lemak Babi dalam Produk Pangan Di Padangsidimpuan Secara Kualitatif dengan Menggunakan Gas Kromatografi (GC),” Tazkir, vol. 9, pp. 1-15. 2014.
[4]K. Triyana, D.K. Agustika, F. Hardoyono, and Chotimah, “Penerapan Metode Ekstraksi Ciri Berbasis Transformasi Wavelet Diskrit untuk Meningkatkan Unjuk Kerja Electronic nose,” Prosiding Pertemuan Ilmiah XXVI HFI Jateng & DIY, Purworejo, pp. 90-93, Apr. 2012.
[5]D. Lelono , K. Triyana, S. Hartati, and J.E. Istiyanto, “Development of Electronic Nose with Highly Stable Sample Heater to Classify Quality Levels of Local Black Tea,” International Journal Of Advanced Science Engineering Information Technology, vol. 7, no. 2, pp. 352-358, 2017.
[6]T. Sutojo, E. Mulyanto, V. Suhartono, Kecerdasan Buatan. Yogyakarta, Indonesia: Penerbit Andi, 2010.
[7]Y. Kurniati, “Implementasi Metode Bidirectional Associative memory pada Absensi Berbasis Indentifikasi Wajah,” S.Kom Skripsi, Ilmu Komputer, Universitas Sumatra Utara, Indonesia, 2014.
[8]F. Rosyad and D. Lenono, “Klasifikasi Kemurnian Daging Sapi Berbasis Electronic Nose dengan Metode Principal Component Analysis,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 6, no. 1, p. 47, Apr. 2016 [Online]. Available: https://jurnal.ugm.ac.id/ijeis/article/view/10770. [Accessed: 31-May-2017]
.
[9]I. Hornstein and P. F. Crowe, “Meat Flavor Chemistry, Flavor Studies on Beef and Pork,” J. Agric. Food Chem., vol. 8, no. 6, pp. 494-498, Nov. 1960.
[10] A.J. Myers, S.M. Scramlin, A.C. Dilger, C.M. Souza, F.K. McKeith, and J. Killefer, “Contribution of lean, fat, muscle color and degree of doneness to pork and beef species flavor,” Jurnal of Meat Science, vol. 82, p. 59, Dec. 2008.
[11] C. A. Lintang, T. W. Widodo, and D. Lelono, “Rancang Bangun Electronic Nose untuk Mendeteksi Tingkat Kebusukan Ikan Air Tawar,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 6, no. 2, p. 129, Oct. 2016 [Online]. Available: https://jurnal.ugm.ac.id/ijeis/article/view/15251. [Accessed: 31-May-2017]
[12]B. Kosko, “Bidirectional Associative Memories,” IEEE Trans. Syst. Man. and Cybern., vol. 18, no. 1, pp. 49-60, Feb. 1988.
DOI: https://doi.org/10.22146/ijeis.25489
Article Metrics
Abstract views : 4679 | views : 4648Refbacks
- There are currently no refbacks.
Copyright (c) 2017 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1