Online Learning Video Recommendation System Based on Course and Sylabus Using Content-Based Filtering
Faisal Ramadhan(1*), Aina Musdholifah(2)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Ammy, P. M. and Wahyuni, S., 2020, Analisis Motivasi Belajar Mahasiswa Menggunakan Video Pembelajaran Sebagai Alternatif Pembelajaran Jarak Jauh (PJJ), Jurnal Mathematic Paedagogic, 5(1), 27-35.
Persson, A.C., Fyrenius, A. and Bergdahl, B., 2010, Perspectives on using multimedia scenarios in a PBL medical curriculum, Medical teacher, 32(9), pp.766-772.
Van Den Hurk, M. M., Wolfhagen, I. H., Dolmans, D. H., and Van Der Vleuten, C. P. (1999), The impact of student‐generated learning issues on individual study time and academic achievement, Medical Education, 33(11), 808-814.
Burke, R., 2002, Hybrid recommender systems: Survey and experiments, User modeling and user-adapted interaction, 12(4), pp.331-370.
Adam, N. L., Sulaiman, M. S. A., and Soh, S. C., 2019, Calculus video recommender system, Journal of Physics: Conference Series, 1366, 1-8.
Uysal, A.K. and Gunal, S., 2014, The impact of preprocessing on text classification, Information Processing & Management, 50(1), pp.104-112.
Srividhya, V. and Anitha, R., 2010, Evaluating preprocessing techniques in text categorization, International journal of computer science and application, 47(11), pp.49-51.
Khusro, S., Ali, Z. and Ullah, I., 2016. Recommender systems: issues, challenges, and research opportunities. In Information Science and Applications (ICISA) 2016 (pp. 1179-1189). Springer, Singapore.
Rahman, A., Wiranto, W. and Doewes, A., 2017. Online news classification using multinomial naive bayes. ITSMART: Jurnal Teknologi dan Informasi, 6(1), pp.32-38.
Nurjannah, M., Hamdani, H., and Astuti, I. F., 2016, Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) untuk Text Mining, Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 8(3), 110-113.
Munot, N. and Govilkar, S.S., 2014, Comparative study of text summarization methods, International Journal of Computer Applications, 102(12).
DOI: https://doi.org/10.22146/ijccs.65623
Article Metrics
Abstract views : 3336 | views : 3081Refbacks
- There are currently no refbacks.
Copyright (c) 2021 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1