Bioadsorption of Copper(II) Using Halmahera Specific Marine Algae (Sargassum turbinarioides) Encapsulated Calcium Alginate
Dede Ardiansyah Takdir Abubakar Sanawi(1), Barlah Rumhayati(2*), Qonitah Fardiyah(3)
(1) Postgraduate Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
This study investigated the conditions for bioadsorption of copper(II) using Halmahera marine algae (Sargassum turbinarioides) encapsulated with calcium alginate by batch method. Physicochemical parameters of biosorption, including contact time, biosorbent mass, pH, and copper(II) concentration, were studied to determine the percentage of copper(II) adsorbed. The maximum percentage of copper(II) bioadsorption was 96.4% under the optimum bioadsorption conditions with a contact time of 90 min, a biosorbent mass of 2 g, a solution pH of 5, and a copper(II) concentration of 60 mg/L. The bioadsorption isotherm study showed that the Langmuir model is more suitable for modeling copper(II) bioadsorption, while the bioadsorption kinetics study showed a pseudo-second-order kinetic model. Characterization of the biosorbent using FTIR showed that the biosorbent has active functional groups such as O–H, C–H, S–H, C=O, S=O, and C–O–C, which act as metal ligands, and SEM characterization showed morphological changes in the biosorbent before and after the copper(II) bioadsorption process.
Keywords
Full Text:
Full Text PDFReferences
[1] Arif, A., Malik, M.F., Liaqat, S., Aslam, A., Mumtaz, K., Afzal, A., Mahmood Ch, D., Nisa, K., Khursid, F., Arif, F., Khalid, M.S.Z., and Javed, R., 2020, Water pollution and industries, Pure Appl. Biol., 9 (4), 2214–2224.
[2] Budianta, W., 2021, Heavy metal pollution and mobility of sediment in Tajum River caused by artisanal gold mining in Banyumas, Central Java, Indonesia, Environ. Sci. Pollut. Res., 28 (7), 8585–8593.
[3] Yusfaddillah, A., Dwi Saputri, R., Edelwis, T.W., and Pardi, H., 2023, Heavy metal pollution in Indonesian waters, BIO Web Conf., 79, 04001.
[4] Hamuna, B., and Tanjung, R.H.R., 2021, Heavy metal content and spatial distribution to determine the water pollution index in Depapre waters, Papua, Indonesia, Curr. Appl. Sci. Technol., 21 (1), 1–11.
[5] Valko, M., Morris, H., and Cronin, M.T.D., 2005, Metals, toxicity and oxidative stress, Curr. Med. Chem., 12 (10), 1161–1208.
[6] Mesquita, A.F., Gonçalves, F.J.M., and Gonçalves, A.M.M., 2023, The lethal and sub-lethal effects of fluorinated and copper-based pesticides—A review, Int. J. Environ. Res. Public Health, 20 (4), 1–22.
[7] [7] Liu, Y., Wang, H., Cui, Y., dan Chen, N., 2023, Removal of Copper Ions from Wastewater: A Review, Int. J. Environ. Res. Public Health, 20 (5), 3706.
[8] Znad, H., Awual, M.R., and Martini, S., 2022, The utilization of algae and seaweed biomass for bioremediation of heavy metal contaminated wastewater, Molecules, 27 (4), 1275.
[9] Jeremias, J.S.D., Lin, J.Y., Dalida, M.L.P., and Lu, M.C., 2023, Abatement technologies for copper containing industrial wastewater effluents - A review, J. Environ. Chem. Eng., 11 (2), 109336.
[10] Niad, M., Rasoolzadeh, L., and Zarei, F., 2014, Biosorption of copper(II) on Sargassum angostifolium C.Agardh phaeophyceae biomass, Chem. Speciation Bioavailability, 26 (3), 176–183.
[11] Artemisia, R., Setyowati, E.P., Martien, R., and Nugroho, A.K., 2019, The properties of brown marine algae Sargassum turbinarioides and Sargassum ilicifolium collected from Yogyakarta, Indonesia, Indones. J. Pharm., 30 (1), 43–51.
[12] Saldarriaga-Hernandez, S., Nájera-Martínez, E.F., Martínez-Prado, M.A., and Melchor-Martínez, E.M., 2020, Sargassum based potential biosorbent to tackle pollution in aqueous ecosystems – An overview, Case Stud. Chem. Environ. Eng., 2, 100032.
[13] Bilal, M., Rasheed, T., Sosa-Hernández, J.E., Raza, A., Nabeel, F., and Iqbal, H.M.N., 2018, Biosorption: An interplay between marine algae and potentially toxic elements—A review, Mar. Drugs, 16 (2), 65.
[14] de Souza Coração, A.C., dos Santos, F.S., Duarte, J.A., Lopes-Filho, E.A.P., De-Paula, J.C., Rocha, L.M., Krepsky, N., Fiaux, S.B., and Teixeira, V.L., 2020, What do we know about the utilization of the Sargassum species as biosorbents of trace metals in Brazil?, J. Environ. Chem. Eng., 8 (4), 103941.
[15] Solo, A.A., Rumhayati, B., and Masruri, M., 2023, Hardness water removal by using cellulose papyrus fibers (Borrasus flabelifer L) from East Nusa Tenggara modified with citric acid, Media Konservasi, 28 (2), 129–134.
[16] Najafi-Soulari, S., Shekarchizadeh, H., and Kadivar, M., 2016, Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels, J. Biomater. Sci., Polym. Ed., 27 (16), 1631–1644.
[17] Shalapy, A., Zhao, S., Zhang, C., Li, Y., Geng, H., Ullah, S., Wang, G., Huang, S., and Liu, Y., 2020, Adsorption of deoxynivalenol (DON) from corn steep liquor (CSL) by the microsphere adsorbent SA/CMC loaded with calcium, Toxins, 12 (4), 208.
[18] Abu Al-Rub, F.A., El-Naas, M.H., Benyahia, F., and Ashour, I., 2004, Biosorption of nickel on blank alginate beads, free and immobilized algal cells, Process Biochem., 39 (11), 1767–1773.
[19] Barquilha, C.E.R., Cossich, E.S., Tavares, C.R.G., and Silva, E.A., 2019, Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products, Bioresour. Technol. Rep., 5, 43–50.
[20] Rusdiyana, D.N.A., Purnamawati, A.E., Astuti, D.H., and Sani, S., 2023, Penentuan persamaan Langmuir dan Freundlich pada adsorpsi logam Cu(II) air limbah elektroplating dengan silika dari abu vulkanik gunung Bromo, Inovasi Teknik Kimia, 8 (2), 83–88.
[21] Hansen, H.K., Gutiérrez, C., Valencia, N., Gotschlich, C., Lazo, A., Lazo, P., and Ortiz-Soto,R., 2023, Selection of operation conditions for a batch brown seaweed biosorption system for removal of copper from aqueous solutions, Metals, 13 (6), 1008.
[22] Ni’am, A.C., Suhar, M., and Fenelon, E., 2023, Characterization and potential of Samanea saman-activated carbon on adsorption of copper from an aqueous solution, Adsorpt. Sci. Technol., 2023, 1911596.
[23] Jayakumar, V., Govindaradjane, S., Rajamohan, N., and Rajasimman, M., 2022, Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc, Environ. Sci. Pollut. Res., 29 (28), 41909–41922.
[24] Osman, N.S., Md Ali, U.F., Gopinath, S.C.B., Hussin, F., and Aroua, M.K., 2024, Bio-removal of lead(II) ions under optimal condition by zinc chloride-impregnated activated carbon from brown alga, Biomass Convers. Biorefin., s13399-024-05404-9.
[25] Nastaj, J., Przewłocka, A., and Rajkowska-Myśliwiec, M., 2016, Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: Equilibrium, kinetic and mechanism studies, Pol. J. Chem. Technol., 18 (3), 81–87.
[26] Dulla, J.B., Tamana, M.R., Boddu, S., Pulipati, K., and Srirama, K., 2020, Biosorption of copper(II) onto spent biomass of Gelidiella acerosa (brown marine algae): Optimization and kinetic studies, Appl. Water Sci., 10 (2), 56.
[27] González Fernández, L.A., Navarro Frómeta, A.E., Carranza Álvarez, C., Flores Ramírez, R., Díaz Flores, P.E., Castillo Ramos, V., Sánchez Polo, M., Carrasco Marín, F., and Medellín Castillo, N.A., 2023, Valorization of Sargassum biomass as potential material for the remediation of heavy-metals-contaminated waters, Int. J. Environ. Res. Public Health, 20 (3), 2559.
[28] El-Sheekh, M., El-Sabagh, S., Abou Elsoud, G., and Elbeltagy, A., 2020, Efficacy of immobilized biomass of the seaweeds Ulva lactuca and Ulva fasciata for cadmium biosorption, Iran. J. Sci. Technol., Trans. A: Sci., 44 (1), 37–49.
[29] Akbari, M., Hallajisani, A., Keshtkar, A.R., Shahbeig, H., and Ali Ghorbanian, S., 2015, Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica, J. Environ. Chem. Eng., 3 (1), 140–149.
[30] Kang, J.K., Pham, B.N., Lee, C.G., and Park, S.J., 2023, Biosorption of Cd2+, Cu2+, Ni2+, Pb2+ by four different macroalgae species (Costaria costata, Hizikia fusiformis, Gracilaria verrucosa, and Codium fragile), Int. J. Environ. Sci. Technol., 20 (9), 10113–10122.
[31] Afroze, S., and Sen, T.K., 2018, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water, Air, Soil Pollut., 229 (7), 225.
[32] Foroutan, R., Esmaeili, H., Abbasi, M., Rezakazemi, M., and Mesbah, M., 2018, Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae, Environ. Technol., 39 (21), 2792–2800.
[33] Mahmood, Z., Zahra, S., Iqbal, M., Raza, M.A., and Nasir, S., 2017, Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater, Appl. Water Sci., 7 (7), 3469–3481.
[34] Ibrahim, W.M., Hassan, A.F., and Azab, Y.A., 2016, Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon, Egypt. J. Basic Appl. Sci., 3 (3), 241–249.
[35] Cuppett, J.D., Duncan, S.E., and Dietrich, A.M., 2006, Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response, Chem. Senses, 31 (7), 689–697.
[36] Madkour, A.G., and Dar, M.A., 2021, Biosorption of Cu and Zn in a batch system via dried macroalgae halimeda opuntia and turbinaria turbinata, Environ. Res. Eng. Manage., 77 (1), 76–84.
[37] Lekshmi, R., Rejiniemon, T.S., Sathya, R., Kuppusamy, P., AL-mekhlafi, F.A., Wadaan, M.A., and Rajendran, P., 2022, Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa, Chemosphere, 306, 135479.
[38] Saldarriaga-Hernandez, S., Hernandez-Vargas, G., Iqbal, H.M.N., Barceló, D., and Parra-Saldívar, R., 2020, Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach, Sci. Total Environ., 715, 136978.
[39] Raju, C.A.I., Anitha, J., Mahalakshmi Kalyani, R., Satyanandam, K., and Jagadeesh, P., 2021, Sorption of cobalt using marine macro seaweed graciliariacorticata red algae powder, Mater. Today: Proc., 44, 1816–1827.
[40] Petrovič, A., and Simonič, M., 2016, Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana, Int. J. Environ. Sci. Technol., 13 (7), 1761–1780.
[41] Al-Qodah, Z., Al-Shannag, M., Amro, A., Assirey, E., Bob, M., Bani-Melhem, K., and Alkasrawi, M., 2017, Impact of surface modification of green algal biomass by phosphorylation on the removal of copper(II) ions from water, Turk. J. Chem., 41 (2), 190–208.
[42] Lee, H., Shim, E., Yun, H.S., Park, Y.T., Kim, D., Ji, M.K., Kim, C.K., Shin, W.S., and Choi, J., 2016, Biosorption of Cu(II) by immobilized microalgae using silica: Kinetic, equilibrium, and thermodynamic study, Environ. Sci. Pollut. Res., 23 (2), 1025–1034.
[43] Cygnarowska, K., 2023, The use of algae to remove copper and lead from industrial wastewater, Geol. Geophys. Environ., 49 (1), 85–93.
[44] Lavania-Baloo, Idayu, N., Salihi, I.U., and Zainoddin, J., 2017, The use of macroalgae (Gracilaria changii) as bio-adsorbent for copper(II) removal, IOP Conf. Ser.: Mater. Sci. Eng., 201 (1), 012031.
[45] Roozegar, M., and Behnam, S., 2019, An eco-friendly approach for copper(II) biosorption on alga Cystoseira indica and its characterization, Environ. Prog. Sustainable Energy, 38 (s1), S323–S330.
DOI: https://doi.org/10.22146/ijc.99090
Article Metrics
Abstract views : 132 | views : 107Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.