Review on Melanin Application as an Antibacterial and Antioxidant Agent in Food Packaging
Zainal Mustakim(1), Agus Prasetya(2), Joko Wintoko(3), Chandra Wahyu Purnomo(4*)
(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Gresik, Jl. Sumatera No. 101, Gresik 61121, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
One of the solutions to reduce food waste is creating innovative food packaging to lengthen its shelf life. This type of packaging can be produced by incorporating natural antimicrobials and antioxidation agents such as melanin. Various biologically active and multifunctional properties are associated with this biomacromolecule, i.e., antioxidants, antibacterial properties, and free radical scavengers. Thus, melanin is an indispensable component. It is expected that food packaging manufactured from natural materials containing melanin will have several advantages, including biodegradability, antioxidant ability, and antibacterial activity. A review of melanin as an antibacterial and antioxidant agent from many different sources that is utilized as an additive in food packaging is presented.
Keywords
Full Text:
Full Text PDFReferences
[1] Ding, Q., and Zhu, H., 2023, The key to solving plastic packaging wastes: Design for recycling and recycling technology, Polymers, 15 (6), 1485.
[2] Yang, N., Sun, Z.X., Feng, L.S., Zheng, M.Z., Chi, D.C., Meng, W.Z., Hou, Z.Y., Bai, W., and Li, K.Y., 2015, Plastic film mulching for water-efficient agricultural applications and degradable films materials development research, Mater. Manuf. Processes, 30 (2), 143–154.
[3] Ibrahim, I.D., Hamam, Y., Sadiku, E.R., Ndambuki, J.M., Kupolati, W.K., Jamiru, T., Eze, A.A., and Snyman, J., 2022, Need for sustainable packaging: An overview, Polymers, 14 (20), 4430.
[4] Nayanathara Thathsarani Pilapitiya, P.G.C., and Ratnayake, A.S., 2024, The world of plastic waste: A review, Cleaner Mater., 11, 100220.
[5] Kaya, M., Ravikumar, P., Ilk, S., Mujtaba, M., Akyuz, L., Labidi, J., Salaberria, A.M., Cakmak, Y.S., and Erkul, S.K., 2018, Production and characterization of chitosan based edible films from Berberis crataegina’s fruit extract and seed oil, Innovative Food Sci. Emerging Technol., 45, 287–297.
[6] Gupta, V., Biswas, D., and Roy, S., 2022, A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications, Materials, 15 (17), 5899.
[7] Paidari, S., Zamindar, N., Tahergorabi, R., Kargar, M., Ezzati, S., Shirani, N., and Musavi, S.H., 2021, Edible coating and films as promising packaging: A mini review, J. Food Meas. Charact., 15 (5), 4205–4214.
[8] Pham, T.T., Nguyen, L.L.P., Dam, M.S., and Baranyai, L., 2023, Application of edible coating in extension of fruit shelf life: Review, AgriEngineering, 5 (1), 520–536.
[9] Vargas-Torres, A., Becerra-Loza, A.S., Sayago-Ayerdi, S.G., Palma-Rodríguez, H.M., García-Magaña, M.L., and Montalvo-González, E., 2017, Combined effect of the application of 1-MCP and different edible coatings on the fruit quality of jackfruit bulbs (Artocarpus heterophyllus Lam) during cold storage, Sci. Hortic., 214, 221–227.
[10] Martins, V.G., Romani, V.P., Martins, P.C., and Filipini, G.S., 2019, “Innovative Packaging That Saves Food” in Saving Food, Eds., Galanakis, C.M., Academic Press, Cambridge, MA, US, 171–202.
[11] Tan, C., Faqir, Y., Zeng, Y., Huang, Y., Ocloo, E.A., Kaleri, A.R., Kalhoro, M.T., Ma, J., and Aslam, M., 2022, Investigation of biomechanical characteristics of novel chitosan from dung beetle and its application potential on stored tomato fruit, J. Food Meas. Charact., 16 (6), 4551–4563.
[12] Zheng, M., Zhu, Y., Zhuang, Y., Tan, K.B., and Chen, J., 2023, Effects of grape seed extract on the properties of pullulan polysaccharide/xanthan gum active films for apple preservation, Int. J. Biol. Macromol., 241, 124617.
[13] Kumar, N., Pratibha, P., Prasad, J., Yadav, A., Upadhyay, A., Neeraj, N., Shukla, S., Petkoska, A.T., Heena, H., Suri, S., Gniewosz, M., and Kieliszek, M., 2023, Recent trends in edible packaging for food applications-perspective for the future, Food Eng. Rev., 15 (4), 718–747.
[14] Lin, D., Sun, L.C., Chen, Y.L., Liu, G.M., Miao, S., and Cao, M.J., 2022, Shrimp spoilage mechanisms and functional films/coatings used to maintain and monitor its quality during storage, Trends Food Sci. Technol., 129, 25–37.
[15] Roy, S., and Rhim, J.W., 2022, New insight into melanin for food packaging and biotechnology applications, Crit. Rev. Food Sci. Nutr., 62 (17), 4629–4655.
[16] Liu, L., Xu, H., Gao, L., Zhao, Y., Wang, H., Shi, N., Guo, L., and Liu, P., 2022, Application of melanin as biological functional material in composite film field, Sci. Eng. Compos. Mater., 29 (1), 126–139.
[17] Guo, L., Li, W., Gu, Z., Wang, L., Guo, L., Ma, S., Li, C., Sun, J., Han, B., and Chang, J., 2023, Recent advances and progress on melanin: From source to application, Int. J. Mol. Sci., 24 (5), 1–26.
[18] Cao, W., Zhou, X., McCallum, N.C., Hu, Z., Ni, Q.Z., Kapoor, U., Heil, C.M., Cay, K.S., Zand, T., Mantanona, A.J., Jayaraman, A., Dhinojwala, A., Deheyn, D.D., Shawkey, M.D., Burkart, M.D., Rinehart, J.D., and Gianneschi, N.C., 2021, Unraveling the structure and function of melanin through synthesis, J. Am. Chem. Soc., 143 (7), 2622–2637.
[19] Ghattavi, K., Homaei, A., Kamrani, E., and Kim, S.K., 2022, Melanin pigment derived from marine organisms and its industrial applications, Dyes Pigm., 201, 110214.
[20] Lorquin, F., Piccerelle, P., Orneto, C., Robin, M., and Lorquin, J., 2022, New insights and advances on pyomelanin production: From microbial synthesis to applications, J. Ind. Microbiol. Biotechnol., 49 (4), kuac013.
[21] Xie, W., Pakdel, E., Liang, Y., Kim, Y.J., Liu, D., Sun, L., and Wang, X., 2019, Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: A review, Biomacromolecules, 20 (12), 4312–4331.
[22] Solano, F., 2014, Melanins: Skin pigments and much more—types, structural models, biological functions, and formation routes, New J. Sci., 2014 (1), 498276.
[23] Brenner, M., and Hearing, J.V., 2008, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84 (3), 539–549.
[24] Ushakova, N.A., Dontsov, A.E., Sakina, N.L., Brodsky, E.S., Ratnikova, I.A., Gavrilova, N.N., Bastrakov, A.I., Kozlova, A.A., and Nekrasov, R.V., 2017, Melanin properties at the different stages towards life cycle of the fly Hermetia illucens, Ukr. J. Ecol., 7 (4), 424–431.
[25] Pralea, I.E., Moldovan, R.C., Petrache, A.M., Ilieș, M., Hegheș, S.C., Ielciu, I., Nicoară, R., Moldovan, M., Ene, M., Radu, M., Uifălean, A., and Iuga, C.A., 2019, From extraction to advanced analytical methods: The challenges of melanin analysis, Int. J. Mol. Sci., 20 (16), 3943.
[26] Mavridi-Printezi, A., Menichetti, A., Mordini, D., Amorati, R., and Montalti, M., 2023, Recent applications of melanin-like nanoparticles as antioxidant agents, Antioxidants, 12 (4), 863.
[27] Lorquin, F., Ziarelli, F., Amouric, A., Di Giorgio, C., Robin, M., Piccerelle, P., and Lorquin, J., 2021, Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments, Sci. Rep., 11 (1), 8538.
[28] Roy, S., Van Hai, L., Kim, H.C., Zhai, L., and Kim, J., 2020, Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films, Carbohydr. Polym., 231, 115729.
[29] Ju, K.Y., Kang, J., Pyo, J., Lim, J., Chang, J.H., and Lee, J.K., 2016, pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification, Nanoscale, 8 (30), 14448–14456.
[30] Chen, X., Jin, J., Hou, F., Song, B., Li, Z., and Zhao, Y., 2022, Effects of black soldier fly larvae oil on growth performance, immunity and antioxidant capacity, and intestinal function and microbiota of broilers, J. Appl. Poult. Res., 31 (4), 100292.
[31] Roy, S., and Rhim, J.W., 2019, Agar-based antioxidant composite films incorporated with melanin nanoparticles, Food Hydrocolloids, 94, 391–398.
[32] Alam, M.Z., Ramachandran, T., Antony, A., Hamed, F., Ayyash, M., and Kamal-Eldin, A., 2022, Melanin is a plenteous bioactive phenolic compound in date fruits (Phoenix dactylifera L.), Sci. Rep., 12 (1), 6614.
[33] Łopusiewicz, Ł., Macieja, S., Śliwiński, M., Bartkowiak, A., Roy, S., and Sobolewski, P., 2022, Alginate biofunctional films modified with melanin from watermelon seeds and zinc oxide/silver nanoparticles, Materials, 15 (7), 2381.
[34] Łopusiewicz, Ł., 2018, Scleroderma citrinum melanin: Isolation, purification, spectroscopic studies with characterization of antioxidant, World Sci. News, 94 (2), 115–130.
[35] Xu, C., Li, J., Yang, L., Shi, F., Yang, L., and Ye, M., 2017, Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus, Food Control, 73, 1445–1451.
[36] Zerrad, A., Anissi, J., Ghanam, J., Sendide, K., and El Hassouni, M., 2014, Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain, J. Biotechnol. Lett., 5 (1), 87–94.
[37] El-Naggar, N.E.A., and El-Ewasy, S.M., 2017, Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H, Sci. Rep., 7 (1), 42129.
[38] Zhang, H., Huang, C., Zhang, J., Wang, C., Wang, T., Shi, S., Gu, Z., and Li, Y., 2022, Synthetic fungal melanin nanoparticles with excellent antioxidative property, Giant, 12, 100120.
[39] Zhao, W., Liang, X., Wang, X., Wang, S., Wang, L., and Jiang, Y., 2022, Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging, Carbohydr. Polym., 290, 119471.
[40] Chongkae, S., Nosanchuk, J.D., Pruksaphon, K., Laliam, A., Pornsuwan, S., and Youngchim, S., 2019, Production of melanin pigments in saprophytic fungi in vitro and during infection, J. Basic Microbiol., 59 (11), 1092–1104.
[41] Wang, L.F., and Rhim, J.W., 2019, Isolation and characterization of melanin from black garlic and Sepia ink, LWT, 99, 17–23.
[42] Toledo, A.V., Franco, M.E.E., Yanil Lopez, S.M., Troncozo, M.I., Saparrat, M.C.N., and Balatti, P.A., 2017, Melanins in fungi: Types, localization and putative biological roles, Physiol. Mol. Plant Pathol., 99, 2–6.
[43] Yang, X., Tang, C., Zhao, Q., Jia, Y., Qin, Y., and Zhang, J., 2023, Melanin: A promising source of functional food ingredient, J. Funct. Foods, 105, 105574.
[44] Farid, N., Waheed, A., and Motwani, S., 2023, Synthetic and natural antimicrobials as a control against food borne pathogens: A review, Heliyon, 9 (6), e17021.
[45] El-Naggar, N.E.A., and Saber, W.I.A., 2022, Natural melanin: Current trends, and future approaches, with especial reference to microbial source, Polymers, 14 (7), 1339.
[46] Ponphaiboon, J., Krongrawa, W., Aung, W.W., Chinatangkul, N., Limmatvapirat, S., and Limmatvapirat, C., 2023, Advances in natural product extraction techniques, electrospun fiber fabrication, and the integration of experimental design: A comprehensive review, Molecules, 28 (13), 5163.
[47] Suvarna, V., Nair, A., Mallya, R., Khan, T., and Omri, A., 2022, Antimicrobial nanomaterials for food packaging, Antibiotics, 11 (6), 729.
[48] Bose, I., Roy, S., Pandey, V.K., and Singh, R., 2023, A comprehensive review on significance and advancements of antimicrobial agents in biodegradable food packaging, Antibiotics, 12 (6), 968.
[49] Shankar, S., Wang, L.F., and Rhim, J.W., 2019, Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application, Food Packag. Shelf Life, 21, 100363.
[50] Liang, Y., Zhao, Y., Sun, H., Dan, J., Kang, Y., Zhang, Q., Su, Z., Ni, Y., Shi, S., Wang, J., and Zhang, W., 2023, Natural melanin nanoparticle-based photothermal film for edible antibacterial food packaging, Food Chem., 401, 134117.
[51] Manzoor, A., Yousuf, B., Pandith, J.A., and Ahmad, S., 2023, Plant-derived active substances incorporated as antioxidant, antibacterial or antifungal components in coatings/films for food packaging applications, Food Biosci., 53, 102717.
[52] Deshmukh, R.K., and Gaikwad, K.K., 2024, Natural antimicrobial and antioxidant compounds for active food packaging applications, Biomass Convers. Biorefin., 14 (4), 4419–4440.
[53] Shankar, S., Bang, Y.J., and Rhim, J.W., 2019, Antibacterial LDPE/GSE/Mel/ZnONP composite film-coated wrapping paper for convenience food packaging application, Food Packag. Shelf Life, 22 (June), 100421.
[54] Huang, T., Qian, Y., Wei, J., and Zhou, C., 2019, Polymeric antimicrobial food packaging and its applications, Polymers, 11 (3), 560.
[55] Vasanthabharathi, V., Lakshminarayanan, R., and Jayalakshmi, S., 2011, Melanin production from marine Streptomyces, Afr. J. Biotechnol., 10 (54), 11224–11234.
[56] Laxmi, M., Kurian, N.K., Smitha, S., and Bath, S.G., 2014, Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens, Indian J. Biotechnol., 15 (3), 392–399.
[57] Bin, L., Wei, L., Xiaohong, C., Mei, J., and Mingsheng, D., 2012, In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom, Ann. Microbiol., 62 (4), 1523–1530.
[58] Kiran, G.S., Jackson, S.A., Priyadharsini, S., Dobson, A.D.W., and Selvin, J., 2017, Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus, Sci. Rep., 7 (1), 9167.
[59] Łopusiewicz, Ł., Jędra, F., and Mizieińska, M., 2018, New poly(lactic acid) active packaging composite films incorporated with fungal melanin, Polymers, 10 (4), 386.
[60] Roy, S., and Rhim, J.W., 2019, Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles, Colloids Surf., B, 176, 317–324.
[61] Michael, H.S.R., Subiramanian, S.R., Thyagarajan, D., Mohammed, N.B., Saravanakumar, V.K., Govindaraj, M., Maheswari, K.M., Karthikeyan, N., and Ramesh Kumar, C., 2023, Melanin biopolymers from microbial world with future perspectives—A review, Arch. Microbiol., 205 (9), 306.
[62] Fahmy, S.R., Ali, E.M., and Ahmed, N.S., 2014, Therapeutic effect of Sepia ink extract against invasive pulmonary aspergillosis in mice, J. Basic Appl. Zool., 67 (5), 196–204.
[63] Guo, X., Chen, S., Hu, Y., Li, G., Liao, N., Ye, X., Liu, D., and Xue, C., 2014, Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity, J. Food Sci. Technol., 51 (12), 3680–3690.
[64] Hou, R., Liu, X., Xiang, K., Chen, L., Wu, X., Lin, W., Zheng, M., and Fu, J., 2019, Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom, Food Chem., 277, 533–542.
[65] El-Zawawy, N.A., Kenawy, E.R., Ahmed, S., and El-Sapagh, S., 2024, Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties, Microb. Cell Fact., 23 (1), 23.
[66] Khandelwal, S., Devi, N.R., Subramaniyan, M., and Pappu, S., 2023, Physicochemical characterization and therapeutic potential of ink from squid, Sepioteuthis lessoniana, 3 Biotech, 13 (12), 418.
[67] Chawla, R., Sivakumar, S., and Kaur, H., 2021, Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- A review, Carbohydr. Polym. Technol. Appl., 2, 100024.
[68] Fadiji, T., Rashvand, M., Daramola, M.O., and Iwarere, S.A., 2023, A review on antimicrobial packaging for extending the shelf life of food, Processes, 11 (2), 590.
[69] Salgado, P.R., Ortiz, C.M., Musso, Y.S., Di Giorgio, L., and Mauri, A.N., 2015, Edible films and coatings containing bioactives, Curr. Opin. Food Sci., 5, 86–92.
[70] Liang, Y., Han, Y., Dan, J., Li, R., Sun, H., Wang, J., and Zhang, W., 2023, A high-efficient and stable artificial superoxide dismutase based on functionalized melanin nanoparticles from cuttlefish ink for food preservation, Food Res. Int., 163, 112211.
[71] Macieja, S., Środa, B., Zielińska, B., Bartkowiak, A., and Łopusiewicz, Ł., 2022, Bioactive carboxymethyl cellulose (CMC)-based films modified with melanin and silver nanoparticles (AgNPs)—The effect of the degree of CMC substitution on the in situ synthesis of AgNPs and films’ functional properties, Int. J. Mol. Sci., 23 (24), 15560.
[72] Bang, Y.J., Shankar, S., and Rhim, J.W., 2020, Preparation of polypropylene/poly (butylene adipate-co-terephthalate) composite films incorporated with melanin for prevention of greening of potatoes, Packag. Technol. Sci., 10 (33), 443–441.
[73] von Braun, J., Afsana, K., Fresco, L.O., and Hassan, M.H.A., 2023, Science and Innovations for Food Systems Transformation, Springer Nature, Cham, Switzerland.
[74] Tavassoli-Kafrani, E., Gamage, M.V., Dumée, L.F., Kong, L., and Zhao, S., 2022, Edible films and coatings for shelf life extension of mango: A review, Crit. Rev. Food Sci. Nutr., 62 (9), 2432–2459.
[75] Alegbeleye, O., Odeyemi, O.A., Strateva, M., and Stratev, D., 2022, Microbial spoilage of vegetables, fruits and cereals, Appl. Food Res., 2 (1), 100122.
[76] Yousuf, B., Wu, S., and Siddiqui, M.W., 2021, Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce, Trends Food Sci. Technol., 108, 245–257.
[77] Zhang, S., 2023, Recent advances of polyphenol oxidases in plants, Molecules, 28 (5), 2158.
[78] Kim, S., 2020, Antioxidant compounds for the inhibition of enzymatic browning by polyphenol oxidases in the fruiting body extract of the edible mushroom Hericium erinaceus, Foods, 9 (7), 951.
[79] Lufu, R., Ambaw, A., and Opara, U.L., 2020, Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors, Sci. Hortic., 272, 109519.
[80] Duda-Chodak, A., Tarko, T., and Petka-Poniatowska, K., 2023, Antimicrobial compounds in food packaging, Int. J. Mol. Sci., 24 (3), 2457.
[81] Zoellner, C., Al-Mamun, M.A., Grohn, Y., Jackson, P., and Worobo R., 2018, Postharvest supply chain with microbial travelers: A farm-to-retail microbial and visualization framework, Appl. Environ. Microbiol., 84 (17), e00813-18.
[82] Thomas, R.M., Falegan, C.R., Olojede, A.O., Oludipe, E.O., Awarun, O.D., and Daodu, G.O., 2023, Nutritional and sensory quality of Ofada rice sourdough bread made with selected lactic acid bacteria strains, Heliyon, 9 (10), e20828.
[83] Saranraj, P., Stella, D., and Reetha, D., 2012, Microbial cellulases and its applications: A review, Int. J. Biochem. Biotechnol., 1, 1–12.
[84] Chirilli, C., Molino, M., and Torri, L., 2022, Consumers’ awareness, behavior and expectations for food packaging environmental sustainability: Influence of socio-demographic characteristics, Foods, 11 (16), 2388.
[85] Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O.V., and García, M.A., 2023, Sustainable and bio-based food packaging: A review on past and current design innovations, Foods, 12 (5), 1057.
[86] Ilyas, R.A., Sapuan, S.M., Megashah, L.N., Ibrahim, R., Atikah, M.S.N., Ainun, Z.M.A., Aung, M.M., SaifulAzry, S.O.A., and Lee, C.H., 2021, “Regulations for Food Packaging Materials” in Bio‐based Packaging: Material, Environmental and Economic Aspects, John Wiley & Sons, Inc., Hoboken, New Jersey, US, 467–494.
[87] Vasile, C., and Baican, M., 2021, Progresses in food packaging, food quality, and safety—controlled-release antioxidant and/or antimicrobial packaging, Molecules, 26 (5), 1263.
[88] Marone, P.A., 2016, “Food Safety and Regulatory Concerns” in Insects as Sustainable Food Ingredients: Production, Processing and Food Applications, Eds., Dossey, A.T., Morales-Ramos, J.A., and Rojas, M.G., Academic Press, San Diego, 203–221.
DOI: https://doi.org/10.22146/ijc.95550
Article Metrics
Abstract views : 281 | views : 132Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.