Clitoria ternatea Increases Milk Production in Dairy Cows by Inhibiting Dopamine Receptor D2: A Computational Study

https://doi.org/10.22146/ijc.92920

Henny Leondro(1), Dimas Pratidina Puriastuti Hadiani(2), Aju Tjatur Nugroho Krisnaningsih(3), Oke Anandika Lestari(4), Didik Wahyudi(5), Dwi Gusmalawati(6), Yuli Arif Tribudi(7), Peni Wahyu Prihandini(8*)

(1) Faculty of Animal Science, Universitas PGRI Kanjuruhan, Jl. S. Supriadi, Malang 65148, Indonesia
(2) Faculty of Animal Science, Universitas PGRI Kanjuruhan, Jl. S. Supriadi, Malang 65148, Indonesia
(3) Faculty of Animal Science, Universitas PGRI Kanjuruhan, Jl. S. Supriadi, Malang 65148, Indonesia
(4) Department of Food Science and Technology, Faculty of Agriculture, Universitas Tanjungpura, Jl. Prof. Hadari Nawawi, Pontianak 78121, Indonesia
(5) Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No. 50, Malang 65144, Indonesia
(6) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Hadari Nawawi, Pontianak 78121, Indonesia
(7) Department of Animal Science, Faculty of Agriculture, Universitas Tanjungpura, Jl. Prof. Hadari Nawawi, Pontianak 78121, Indonesia
(8) Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Jl. Raya Jakarta Bogor, Bogor 16911, Indonesia
(*) Corresponding Author

Abstract


Dairy cow's milk is a primary commodity in various countries and increasing milk production in dairy cows is crucial. Clitoria ternatea has the potential to enhance milk production in dairy cows. This research aims to analyze C. ternatea's ability to induce milk production in dairy cows by targeting the DRD2 protein. The compounds within C. ternatea were screened for drug-likeness, toxicity, physicochemical properties, and membrane permeability parameters. The DRD2 protein in dairy cattle was modeled using homology modeling. The interaction stability between C. ternatea compounds and DRD2 was analyzed through molecular docking and dynamic using AutoDock Vina and Webgro. The study results revealed that among the 18 compounds, 5 passed the drug-likeness screening: citronellal, alpha-terpinolene, 15-methyxypaysine, allyl-crotyl-zinc, and 9,12-octadecadiynoic. These 5 compounds exhibited low toxicity and demonstrated easy penetration of lipid membranes. Molecular docking results indicated that citronellal and alpha-terpinolene had the lowest binding energy values and were bound to the inhibitor's side. Molecular dynamic simulations also confirmed the stability of the interaction between citronellal and alpha-terpinolene with DRD2. In conclusion, this research suggests that C. ternatea can potentially increase milk production in dairy cows by inhibiting the DRD2 protein, primarily through citronellal and alpha-terpinolene.

Keywords


Clitoria ternatea; dairy cow; DRD2; milk

Full Text:

Full Text PDF


References

[1] Raszap Skorbiansky, S., Saavoss, M., and Stewart, H., 2022, Cow’s milk still leads in the United States: The case of cow’s, almond, and soy milk, Agric. Econ., 53 (2), 204–214.

[2] Gulseven, O., and Wohlgenant, M., 2017, What are the factors affecting the consumers’ milk choices?, Agric. Econ., 63 (6), 271–282.

[3] Bórawski, P., Pawlewicz, A., Parzonko, A., Harper, J.K., and Holden, L., 2020, Factors shaping cow’s milk production in the EU, Sustainability, 12 (1), 420.

[4] Boerman, J.P., de Souza, J., and Lock, A.L., 2017, Milk production and nutrient digestibility responses to increasing levels of stearic acid supplementation of dairy cows, J. Dairy Sci., 100 (4), 2729–2738.

[5] Lacasse, P., and Ollier, S., 2015, The dopamine antagonist domperidone increases prolactin concentration and enhances milk production in dairy cows, J. Dairy Sci., 98 (11), 7856–7864.

[6] Al-Snafi, A.E., 2016, Pharmacological importance of Clitoria ternatea – A review, IOSR J. Pharm., 6 (3), 68–83.

[7] Lijon, M.B., Meghla, N.S., Jahedi, E., Rahman, M.A., and Hossain, I., 2017, Phytochemistry and pharmacological activities of Clitoria ternatea, Int. J. Nat. Soc. Sci., 4 (1), 1–10.

[8] Gollen, B., and Gupta, P., 2018, Clitoria ternatea Linn: A herb with potential pharmacological activities: Future prospects as therapeutic herbal medicine, J. Pharmacol. Rep., 3 (1), 1000141.

[9] Nurcholi̇s, W., Iqbal, T.M., Sulistiyani, S., and Liwanda, N., 2023, Profile of secondary metabolites in different part of the butterfly pea (Clitoria ternatea) plant with antioxidant activity, Yuzuncu Yıl Univ. J. Agric. Sci., 33 (2), 231–247.

[10] Bayala, B., Coulibaly, A.Y., Djigma, F.W., Nagalo, B.M., Baron, S., Figueredo, G., Lobaccaro, J.M.A., and Simpore, J., 2020, Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of the essential oil of Cymbopogon nardus, a plant used in traditional medicine, Biomol. Concepts, 11 (1), 86–96.

[11] Yin, J., Chen, K.Y.M., Clark, M.J., Hijazi, M., Kumari, P., Bai, X., Sunahara, R.K., Barth, P., and Rosenbaum, D.M., 2020, Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane, Nature, 584 (7819), 125–129.

[12] Grattan, D.R., 2015, 60 Years of neuroendocrinology: The hypothalamo-prolactin axis, J. Endocrinol., 226 (2), T101–T122.

[13] Fitzgerald, P., and Dinan, T.G., 2008, Prolactin and dopamine: What is the connection? A review article, J. Psychopharmacol., 22 (Suppl. 2), 12–19.

[14] Gong, X., Tao, J., Wang, Y., Wu, J., An, J., Meng, J., Wang, X., Chen, Y., and Zou, J., 2021, Total barley maiya alkaloids inhibit prolactin secretion by acting on dopamine D2 receptor and protein kinase A targets, J. Ethnopharmacol., 273, 113994.

[15] Badano, A., 2021, In silico imaging clinical trials: Cheaper, faster, better, safer, and more scalable, Trials, 22 (1), 64.

[16] Banerjee, P., Eckert, A.O., Schrey, A.K., and Preissner, R., 2018, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (W1), W257–W263.

[17] Tunna, T., Akter, M.S., Parvin, M., Jilhaz, M., Jahan, S., and Ism, Z., 2020, A comparative in vivo study on Bambusa polymorpha, Mentha piperita and Clitoria ternatea as alternative anxiolytic, Eur. J. Med. Health Sci., 2 (3), 266.

[18] Maßberg, D., Simon, A., Häussinger, D., Keitel, V., Gisselmann, G., Conrad, H., and Hatt, H., 2015, Monoterpene (−)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor, Arch. Biochem. Biophys., 566, 100–109.

[19] da Silva, P.R., de Andrade, J.C., de Sousa, N.F., Ribeiro Portela, A.C., Oliveira Pires, H.F., Bezerra Remígio, M.C.R., Alves, D.D.N., de Andrade, H.H.N., Dias, A.L., da Silva Stiebbe Salvadori, M.G., de Olivera Golzio, A.M.F., de Castro, R.D., Scotti, M.T., Bezzera Felipe, C.F., de Almeida, R.N., and Scotti, L., 2023, Computational studies applied to linalool and citronellal derivatives against Alzheimer’s and Parkinson’s disorders: A review with experimental approach, Curr. Neuropharmacol., 21 (4), 842–866.

[20] Abe, K., Higashi, K., Watabe, K., Kobayashi, A., Limwikrant, W., Yamamoto, K., and Moribe, K., 2015, Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces, Colloids Surf., A, 474 63–70.

[21] Andrés, A., Rosés, M., Ràfols, C., Bosch, E., Espinosa, S., Segarra, V., and Huerta, J.M., 2015, Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts, Eur. J. Pharm. Sci., 76, 181–191.

[22] Coimbra, J.T.S., Feghali, R., Ribeiro, R.P., Ramos, M.J., and Fernandes, P.A., 2021, The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer, RSC Adv., 11 (2), 899–908.

[23] Gadaleta, D., Vuković, K., Toma, C., Lavado, G.J., Karmaus, A.L., Mansouri, K., Kleinstrever, N.C., Benfenati, N.C., and Roncaglioni, A., 2019, SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data, J. Ceminf., 11 (1), 58.

[24] Athanasiadou, S., Githiori, J., and Kyriazakis, I., 2007, Medicinal plants for helminth parasite control: Facts and fiction, Animal, 1 (9), 1392–1400.

[25] Nwafor, I.C., Shale, K., and Achilonu, M.C., 2017, Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement, Sci. World J., 2017 (1), 7343928.

[26] Choi, J., and Kim, W.K., 2020, Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review, Animals, 10 (2), 2389.

[27] Mannige, R.V., Kundu, J., and Whitelam, S., 2016, The Ramachandran number: An order parameter for protein geometry, Plos One, 11 (8), e0160023

[28] Kherade, D.S., Tambe, V.S., Wagh, A.D., and Kothawade, P.B., 2022, A comparative molecular docking study of crocetin with multiple receptors for the treatment of Alzheimer’s disease, Biomed. Biotechnol. Res. J., 6 (2), 230–242.

[29] Sargsyan, K., Grauffel, C., and Lim, C., 2017, How molecular size impacts RMSD applications in molecular dynamics simulations, J. Chem. Theory Comput., 13 (4), 1518–1524.

[30] Haydukivska, K., Blavatska, V., and Paturej, J., 2020, Universal size ratios of Gaussian polymers with complex architecture: radius of gyration vs hydrodynamic radius, Sci. Rep., 10 (1), 14127.

[31] da Fonseca, A.M., Caluaco, B.J., Madureira, J.M.C., Cabongo, S.Q., Gaieta, E.M., Djata, F., Colares, R.P., Neto, M.M., Fernades, C.F.C., Marinho, G.S., dos Santos, H.S., and Marinho, E.S., 2023, Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA, Mol. Biotechnol., 10.1007/s12033-023-00831-x.

[32] Akers, R.M., 2017, A 100-year review: Mammary development and lactation, J. Dairy Sci., 100 (12), 10332–10352.

[33] Arendt, L.M., and Kuperwasser, C., 2015, Form and function: How estrogen and progesterone regulate the mammary epithelial hierarchy, J. Mamary Gland Biol. Neoplasia, 20 (1), 9–25.

[34] Foroutan, A., Guo, A.C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., Badran, H., Budinski, Z., Mandal, R., Ametaj, B.N., and Wishart, D.S., 2019, Chemical composition of commercial cow’s milk, J. Agric. Food Chem., 67 (17), 4897–4914.

[35] Lollivier, V., Guinard-Flament, J., Ollivier-Bousquet, M., and Marnet, P.G., 2002, Oxytocin and milk removal: Two important sources of variation in milk production and milk quality during and between milkings, Reprod., Nutr., Dev., 42 (2), 173–186.

[36] Truchet, S., and Honvo-Houéto, E., 2017, Physiology of milk secretion, Best Pract. Res., Clin. Endocrinol. Metab., 31 (4), 367–384.

[37] Podder, A., Pandey, D., and Latha, N., 2016, Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies, Biochimie, 123, 52–64.

[38] Lv, C., Mo, C., Liu, H., Wu, C., Li, Z., Li, J., and Wang, Y., 2018, Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression, Gene, 651, 33–43.

[39] Lacasse, P., Ollier, S., Lollivier, V., and Boutinaud, M., 2016, New insights into the importance of prolactin in dairy ruminants, J. Dairy Sci., 99 (1), 864–874.



DOI: https://doi.org/10.22146/ijc.92920

Article Metrics

Abstract views : 1706 | views : 781


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.