Synthesis of Chitosan Silica Membrane from Petung Bamboo (Dendrocalamus asper) Leaves and Its Application as Pb(II) Metallic Adsorbent

https://doi.org/10.22146/ijc.82065

Hasri Hasri(1*), Diana Eka Pratiwi(2), Isriyanti Safitri(3), Satria Putra Jaya Negara(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km. 20, Makassar 90245, Indonesia
(*) Corresponding Author

Abstract


Membrane synthesis through a phase inversion method using chitosan and sodium silicate solutions has been conducted. This research aims to characterize the silica chitosan membrane (SCM) of petung bamboo leaves and determine the synthesized product's adsorption capacity for Pb(II) ions. The XRF characterization showed the silica content of petung bamboo leaves with a percentage of 78.03%. SEM analysis before adsorption is around 13.0 μm, and the pore diameter after adsorption is around 9.7 μm. The results of adsorption analysis of Pb(II) metal using AAS showed that the SCM variation A at an initial concentration of 10.0000 ppm Pb(II) metal adsorbed was 9.8101 ppm, and at an initial concentration of 25.0000 ppm Pb(II) metal was 22.3421 ppm. The variation B at an initial concentration of 10.0000 ppm Pb(II) metal adsorbed was 9.8870 ppm and at an initial concentration of 25.0000 ppm Pb(II) metal adsorbed was 23.5806 ppm. The variation C at an initial concentration of 10.0000 ppm Pb(II) metal adsorbed was 9.9639 ppm, and at an initial concentration of 25.0000 ppm Pb(II) metal was 24.1855 ppm. The results of this research conclude that the highest SCM adsorption power is variation C (2%:22.95%) with a percentage of 99.63%.


Keywords


adsorbent; Pb(II) metal; petung bamboo leaves (Dendrocalamus asper); silica chitosan membrane

Full Text:

Full Text PDF


References

[1] Obotey Ezugbe, E., and Rathilal, S., 2020, Membrane technologies in wastewater treatment: A review, Membranes, 10 (5), 89.

[2] Yazdi, M.K., Vatanpour, V., Taghizadeh, A., Taghizadeh, M., Ganjali, M.R., Munir, M.T., Habibzadeh, S., Saeb, M.R., and Ghaedi, M., 2020, Hydrogel membranes: A review, Mater. Sci. Eng., C, 114, 111023.

[3] Kalliola, R., Linna, A., Ruokolainen, K., Tyystjärvi, E., and Lange, C., 2022, Foliar element distributions in Guadua bamboo, a major forest dominant in southwestern Amazonia, SN Appl. Sci., 4 (3), 81.

[4] Alkandari, S.H., Lightfoot, J., and Castro-Dominguez, B., 2023, Asymmetric membranes for gas separation: Interfacial insights and manufacturing, RSC Adv., 13 (21), 14198–14209.

[5] Campbell, J., Székely, G., Davies, R.P., Braddock, D.C., and Livingston, A.G., 2014, Fabrication of hybrid polymer/metal organic framework membranes: Mixed matrix membranes versus in situ growth, J. Mater. Chem. A, 2 (24), 9260–9271.

[6] Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A.K., and Verma, S., 2023, Bamboo for producing charcoal and biochar for versatile applications, Biomass Convers. Biorefin., s13399-022-03715-3.

[7] Azman, S.N.H.B., Ameram, N.B., Jaafar, H.B., Amini, M.H.M., and Ali, A., 2023, Extraction of silica from bamboo leaves ash (Bambusoideae) using hydrochloric acid and nitric acid, Orbital, 15 (3), 142–147.

[8] Silviana, S., and Bayu, W.J., 2018, Silicon conversion from bamboo leaf silica by magnesiothermic reduction for development of Li-ion baterry anode, MATEC Web Conf., 156, 05021.

[9] Rahayu, I., Dirna, F.C., Maddu, A., Darmawan, W., Nandika, D., and Prihatini, E., 2021, Dimensional stability of treated sengon wood by nano-silica of betung bamboo leaves, Forests, 12 (11), 1581.

[10] Shanmugam, M., Sivakumar, G., Arunkumar, A., Rajaraman, D., and Indhira, M., 2020, Fabrication and assessment of reinforced ceramic electrical insulator from bamboo leaf ash waste, J. Alloys Compd., 824, 153703.

[11] Moriyama, N., Ike, M., Nagasawa, H., Kanezashi, M., and Tsuru, T., 2022, Network tailoring of organosilica membranes via aluminum doping to improve the humid-gas separation performance, RSC Adv., 12 (10), 5834–5846.

[12] Bui, V., Tandel, A., Satti, V., Haddad, E., and Lin, H., 2023, Engineering silica membranes for separation performance, hydrothermal stability, and production scalability, Adv. Membr., 3, 100064.

[13] Ding, N., 2022, Homogeneous etherification modification of chitosan and preparation of high-strength hydrogel, J. Phys.: Conf. Ser., 2261 (1), 012011.

[14] Sun, P., Zhang, L., and Tao, S., 2019, Preparation of hybrid chitosan membranes by selective laser sintering for adsorption and catalysis, Mater. Des., 173, 107780.

[15] Rosli, N.A.H., Loh, K.S., Wong, W.Y., Yunus, R.M., Lee, T.K., Ahmad, A., and Chong, S.T., 2020, Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids, Int. J. Mol. Sci., 21 (2), 632.

[16] Zia, Q., Tabassum, M., Gong, H., and Li, J., 2019, A review on chitosan for the removal of heavy metals ions, J. Fiber Bioeng. Inf., 12 (3), 103–128.

[17] Wang, C., Bai, J., Tian, P., Xie, R., Duan, Z., Lv, Q., and Tao, Y., 2021, The application status of nanoscale cellulose-based hydrogels in tissue engineering and regenerative biomedicine, Front. Bioeng. Biotechnol., 9, 732513.

[18] Shi, Z., Zhang, Y., Phillips, G.O., and Yang, G., 2014, Utilization of bacterial cellulose in food, Food Hydrocolloids, 35, 539–545.

[19] Delgado-Aguilar, M., Tarrés, Q., Pèlach, M.À., Mutjé, P., and Fullana-i-Palmer, P., 2015, Are cellulose nanofibers a solution for a more circular economy of paper products?, Environ. Sci. Technol., 49 (20), 12206–12213.

[20] Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q., and Guo, S., 2014, In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing, Carbohydr. Polym., 102, 762–771.

[21] Mao, H., Wei, C., Gong, Y., Wang, S., and Ding, W., 2019, Mechanical and water-resistant properties of eco-friendly chitosan membrane reinforced with cellulose nanocrystals, Polymers, 11 (1), 166.

[22] Pasichnyk, M., Stanovsky, P., Polezhaev, P., Zach, B., Šyc, M., Bobák, M., Jansen, J.C., Přibyl, M., Bara, J.E., Friess, K., Havlica, J., Gin, D.L., Noble, R.D., and Izák, P., 2023, Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases, Sep. Purif. Technol., 323, 124436.

[23] Goh, P.S., Othman, M.H.D., and Matsuura, T., 2021, Waste reutilization in polymeric membrane fabrication: A new direction in membranes for separation, Membranes, 11 (10), 782.

[24] Iqhrammullah, M., Marlina, M., and Nur, S., 2020, Adsorption behaviour of hazardous dye (methyl orange) on cellulose-acetate polyurethane sheets, IOP Conf. Ser.: Mater. Sci. Eng., 845 (1), 012035.

[25] Marlina, M., Iqhrammullah, M., Darmadi, D., Mustafa, I., and Rahmi, R., 2019, The application of chitosan modified polyurethane foam adsorbent, Rasayan J. Chem., 12 (2), 494–501.

[26] Marlina, M., Iqhrammullah, M., Saleha, S., Fathurrahmi, F., Maulina, F.P., and Idroes, R., 2020, Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3–N removal, Heliyon, 6 (8), e04590.

[27] Rahmi, R., Fathurrahmi, F., Lelifajri, L., and PurnamaWati, F., 2019, Preparation of magnetic chitosan using local iron sand for mercury removal, Heliyon, 5 (5), e01731.

[28] Saiful, S., Muliadi, R., Ilham, M., Fadli, F., and Yusuf, M., 2018, Preparation of mixed matrix polymeric membrane for removing of contaminants in crude biodiesel, Res. J. Chem. Environ., 22 (Special issue II), 15–21.

[29] Sargin, I., Baran, T., and Arslan, G., 2020, Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls, Sep. Purif. Technol., 247, 116987.

[30] Ghimici, L., and Dinu, I.A., 2019, Removal of some commercial pesticides from aqueous dispersions using as flocculant a thymine-containing chitosan derivative, Sep. Purif. Technol., 209, 698–706.

[31] Saiful, S., Riana, U., Ramli, M., Iqrammullah, M., Raharjo, Y., and Wibisono, Y., 2022, Development of chitosan/rice husk-based silica composite membranes for biodiesel purification, Membranes, 12 (4), 435.

[32] Manurung, R., Siregar, H., and Zuhri, R.R.S., 2019, Synthesis and characterization of K-Silica catalyst based bamboo-leaves for transesterification reaction, AIP Conf. Proc., 2085 (1), 020069.

[33] Budnyak, T.M., Pylypchuk, I.V., Tertykh, V.A., Yanovska, E.S., and Kolodynska, D., 2015, Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method, Nanoscale Res. Lett., 10 (1), 87.

[34] Modau, L., Sigwadi, R., Mokrani, T., and Nemavhola, F., 2023, Chitosan membranes for direct methanol fuel cell applications, Membranes, 13 (10), 838.

[35] Nur, Y., Rohaeti, E., and Darusman, L.K., 2017, Optical sensor for the determination of Pb2+ based on immobilization of dithizone onto chitosan-silica membrane, Indones. J. Chem., 17 (1), 7–14.

[36] Dhaneswara, D., Tsania, A., Fatriansyah, J.F., Muslih, R., Mastuli, M.S., Federico, A., and Ulfiati, R., 2024, Synthesis of mesoporous silica from sugarcane bagasse as adsorbent for colorants using cationic and non-ionic surfactants, Int. J. Technol., 15 (2), 373.

[37] Ebisike, K., Okoronkwo, A.E., and Alaneme, K.K., 2020, Synthesis and characterization of chitosan–silica hybrid aerogel using sol-gel method, J. King Saud Univ., Sci., 32 (1), 550–554.

[38] Udaibah, W., and Priyanto, A., 2017, Synthesis and structure characterization of SiO2 from petung bamboo leaf ash (Dendrocalamus asper (Schult.f.) Backer ex Heyne), JNSMR, 3 (1), 215–220.

[39] Castillo, H., Droguett, T., Vesely, M., Garrido, P., and Palma, S., 2022, Simple compressive strength results of sodium-hydroxide- and sodium-silicate-activated copper flotation tailing geopolymers, Appl. Sci., 12 (12), 5876.

[40] Novita, L., and Idris, I., 2022, Effectiveness of silica gel from palm kernel shell ash as a moisture absorber of bottle packaging medicine, IOP Conf. Ser.: Earth Environ. Sci., 1041 (1), 012044.

[41] Farasati Far, B., Omrani, M., Naimi Jamal, M.R., and Javanshir, S., 2023, Multi-responsive chitosan-based hydrogels for controlled release of vincristine, Commun. Chem., 6 (1), 28.

[42] Zhang, J., Tan, W., Li, Q., Liu, X., and Guo, Z., 2021, Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing, Mar. Drugs, 19 (9), 479.

[43] Azizkhani, S., Mahmoudi, E., Abdullah, N., Ismail, M.H.S., Mohammad, A.W., and Hussain, S.A., 2020, Synthesis and characterisation of graphene oxide-silica-chitosan for eliminating the Pb(II) from aqueous solution, Polymers, 12 (9), 1922.

[44] Ruiz-Rico, M., Sancenón, F., and Barat, J.M., 2022, Evaluation of the in vitro and in situ antimicrobial properties of chitosan-functionalised silica materials, LWT, 173, 114373.

[45] Blachnio, M., Zienkiewicz-Strzalka, M., Derylo-Marczewska, A., Nosach, L.V., and Voronin, E.F., 2023, Chitosan–silica composites for adsorption application in the treatment of water and wastewater from anionic dyes, Int. J. Mol. Sci., 24 (14), 11818.

[46] Zhang, W., An, Y., Li, S., Liu, Z., Chen, Z., Ren, Y., Wang, S., Zhang, X., and Wang, X., 2020, Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent, Sci. Rep., 10 (1), 16453.

[47] Wang, S., Cao, J., Jia, W., Guo, W., Yan, S., Wang, Y., Zhang, P., Chen, H.Y., and Huang, S., 2020, Single molecule observation of hard-soft-acid-base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores, Chem. Sci., 11 (3), 879–887.

[48] Farag, A.A., Gafar Afif, A., Salih, S.A., Altalhi, A.A., Mohamed, E.A., and Mohamed, G.G., 2022, Highly efficient elimination of Pb+2 and Al+3 metal ions from wastewater using graphene oxide/3,5-diaminobenzoic acid composites: Selective removal of Pb2+ from real industrial wastewater, ACS Omega, 7 (43), 38347–38360.

[49] Elewa, A.M., Amer, A.A., Attallah, M.F., Gad, H.A., Al-Ahmed, Z.A.M., and Ahmed, I.A., 2023, Chemically activated carbon based on biomass for adsorption of Fe(III) and Mn(II) ions from aqueous solution, Materials, 16 (3), 1251.

[50] Elma, M., Mujiyanti, D.R., Ismail, N.M., Bilad, M.R., Rahma, A., Rahman, S.K., Fitriani, F., Rakhman, A., and Rampun, E.L.A., 2020, Development of hybrid and templated silica‐p123 membranes for brackish water desalination, Polymers, 12 (11), 2644.

[51] Khan, I., Awan, S.A., Rizwan, M., Ali, S., Hassan, M.J., Brestic, M., Zhang, X., and Huang, L., 2021, Effects of silicon on heavy metal uptake at the soil-plant interphase: A review, Ecotoxicol. Environ. Saf., 222, 112510.

[52] Zaimee, M.Z.A., Sarjadi, M.S., and Rahman, M.L., 2021, Heavy metals removal from water by efficient adsorbents, Water, 13 (19), 2659.

[53] Di, J., Ruan, Z., Zhang, S., Dong, Y., Fu, S., Li, H., and Jiang, G., 2022, Adsorption behaviors and mechanisms of Cu2+, Zn2+ and Pb2+ by magnetically modified lignite, Sci. Rep., 12 (1), 1394.



DOI: https://doi.org/10.22146/ijc.82065

Article Metrics

Abstract views : 2413 | views : 1121


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.