Characterization of Poly(vinylidene Fluoride) Nanofiber-Based Electrolyte and Its Application to Dye-Sensitized Solar Cell with Natural Dyes

https://doi.org/10.22146/ijc.75357

Nita Kusumawati(1*), Pirim Setiarso(2), Agus Budi Santoso(3), Supari Muslim(4), Qurrota A'yun(5), Marinda Mayliansarisyah Putri(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(3) Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(4) Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author

Abstract


The potential of dye-sensitized solar cells (DSSC) as an alternative to depleting fossil fuels has been investigated. To optimize performance and efficiency, the effectiveness of PVDF and PVDF nanofiber (NF) membrane-based electrolytes in suppressing solvent leakage and evaporation in liquid electrolyte systems was evaluated. SEM results for PVDF NF membranes showed the formation of a network with a three-dimensional structure with a diameter of 100–300 nm and an average thickness of 0.14 mm. The Infrared (IR) spectrum shows the electrolyte and polymer-PVDF interactions. Differential Scanning Calorimetry (DSC) curve shows the melting transition of PVDF NF 7.66% lower than PVDF. Efficiency and resistance of DSSC based on natural dyes as measured by multimeter and Electrochemical Impedance Spectroscopy (EIS) at a solar intensity of 100 mW/cm2 showed the highest efficiency of anthocyanin-based DSSC from telang (Clitoria ternatea L.) flower extract. Its use as a photosensitizer in an electrolyte system based on PVDF NF membranes resulted in an efficiency that was not significantly different from that of liquid electrolytes (1.69%).

Keywords


DSSC; natural dye; electrolyte; PVDF; PVDF NF

Full Text:

Full Text PDF


References

[1] Bandara, T.M.W.J., Weerasinghe, A.M.J.S., Dissanayake, M.A.K.L., Senadeera, G.K.R., Furlani, M., Albinsson, I., and Mellander, B.E., 2018, Characterization of poly (vybylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell, Electrochim. Acta, 266, 276–283.

[2] Zulenda, Z., Naselia, U.A., Gustian, N., Zaharah, T.A., and Rahmalia, W., 2018, Sintesis dan karakterisasi kompleks brazilin dari ekstrak kayu secang (Caesalpinia sappan Linn) serta aplikasinya dalam Dye Sensitized Solar Cells (DSSC), J. Kim. Valensi, 5 (1), 8–14.

[3] Roslan, N., Ya'acob, M., Radzi, M.A.M., Hashimoto, Y., Jamaludin, D., and Chen, G., 2018, Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation, Renewable Sustainable Energy Rev., 92, 171–186.

[4] Sonker, R.K., Rahul, R., and Sabhajeet, S.R., 2018, ZnO nanoneedle structure-based dye-sensitized solar cell utilizing solid polymer electrolyte, Mater. Lett., 223, 133–136.

[5] Al-Alwani, M.A.M., Mohammad, A.B., Kadhum, A.A.H., Ludin, N.A., Safie, N.E., Razali, M.Z., Ismail, M., and Sopian, K., 2017, Natural dye extracted from Pandannus amaryllifolius leaves as sensitizer in fabrication of dye-sensitized solar cells, Int. J. Electrochem. Sci., 12, 747–761.

[6] Kabir, F., Sakib, S.N., and Matin, N., 2019, Stability study of natural green dye based DSSC, Optik, 181, 458–464.

[7] Kusumawati, N., Setiarso, P., and Muslim, S., 2018, Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance, Rasayan J. Chem., 11 (3), 1034–1041.

[8] Önen, T., Karakuş, M.Ö., Coşkun, R., and Çetin, H., 2019, Reaching stability at DSSCs with new type gel electrolytes, J. Photochem. Photobiol., A, 385, 112082.

[9] Tan, C.Y., Farhana, N.K., Saidi, N.M., Ramesh, S., and Ramesh, K., 2018, Conductivity, dielectric studies and structural properties of P(VA-co-PE) and its application in dye-sensitized solar cell, Org. Electron., 56, 116–124.

[10] Ahliha, A.H., Nurosyid, F., Supriyanto, A., and Kusumaningsih, T., 2018, Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC), IOP Conf. Ser.: Mater. Sci. Eng., 333, 012018.

[11] Pavithra, N., Velayutham, D., Sorrentino, A., and Anandan, S., 2017, Thiourea incorporated poly(ethylene oxide) as transparent gel polymer electrolyte for dye-sensitized solar cell applications, J. Power Sources, 353, 245–253.

[12] Dissanayake, M.A.K.L., Jaseetharan, T., Senadeera, G.K.R., Mellander, B.E., Albinsson, I., Furlani, M., and Kumari, J.M.K.W., 2021, Solid-state solar cells co-sensitized with PbS/CdS quantum dots and N719 dye and based on solid polymer electrolyte with binary cations and nanofillers, J. Photochem. Photobiol., A, 405, 112915.

[13] Sundaramoorthy, K., Muthu, S.P., and Perumalsamy, R., 2018, Enhanced performance of 4,4'-bipyridine-doped PVDF/KI/I2 based solid state polymer electrolyte for dye-sensitized solar cell applications, J. Mater. Sci.: Mater. Electron., 29 (21), 18074–18081.

[14] Dissanayake, M.A.K.L., Divarathne, H.K.D.W.M.N.R., Thotawatthage, C.A., Dissanayake, C.B., Senadeera, G.K.R., and Bandara, B.M.R., 2014, Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofiber membrane gel electrolyte, Electrochim. Acta, 130, 76–81.

[15] Sahito, I.A., Sun, K.C., Arbab, A.A., and Jeong, S.H., Synergistic effect of thermal and chemical reduction of graphene oxide at the counter electrode on the performance of dye-sensitized solar cells, Sol. Energy, 190, 112–118.

[16] Sahito, I.A., Ahmed, F., Khatri, Z., Sun, K.C., and Jeong, S.H., 2017, Enhanced ionic mobility and increased efficiency of dye-sensitized solar cell by adding lithium chloride in poly(vinylidene fluoride) nanofiber as electrolyte medium, J. Mater. Sci., 52 (24), 13920–13929.

[17] Ahmad, N.A., Goh, P.S., Yogarathinam, L.T., Zulhairun, A.K., and Ismail, A.F., 2020, Current advances in membrane technologies for produced water desalination, Desalination, 493, 114643.

[18] Kusumawati, N., Wijiastuti, A., and Santoso, A.B., 2015, Manufacture of PVDF-Kitosan composite membrane and its utilization in batik industrial wastewater treatment, Res. J. Pharm., Biol. Chem. Sci., 6 (2), 495–503.

[19] Kusumawati, N., Setiarso, P., Sianita, M.M., and Muslim, S., 2018, Transport properties, mechanical behavior, thermal and chemical resistance of asymmetric flat sheet membrane prepared from PSf/PVDF blended membrane on gauze supporting layer, Indones. J. Chem., 18 (2), 257–264.

[20] Maharani, K.D.A., and Kusumawati, N., 2016, The effect of casting solution and non-solvent composition on the performance of polysulfone membranes against chromium (VI), Res. J. Pharm., Biol. Chem. Sci., 7 (2), 495–504.

[21] Ningrum, R.D.C., and Kusumawati, N., 2016, Development and characterization of polysulfone/polyvinylidene fluoride blend membrane induced by delayed liquid-liquid demixing, Int. J. Adv. Sci. Eng. Inf. Technol., 6 (5), 716–722.

[22] Kusumawati, N., Setiarso, P., Muslim, S., and Purwidiani, N., 2018, Synergistic ability of PSf and PVDF to develop high-performance PSf/PVDF coated membrane for water treatment, Rasayan J. Chem., 11 (1), 260–279.

[23] Guilen, G.R., Pan, Y., Li, M., and Hoek, E.M.V., 2011, Preparation and characterization of membranes formed by non-solvent induced phase separation: A review, Ind. Eng. Chem. Res., 50 (7), 3798–3817.

[24] Mousavi, S.M., Zarei, M., Hashemi, S.A., Babapoor, A., and Amani, A.M., 2019, A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities, Artif. Cells, Nanomed., Biotechnol., 47 (1), 1132–1148.

[25] Zhu, H., Wang, H., Wang, F., Guo, Y., Zhang, H., and Chen, J., 2013, Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation, J. Membr. Sci., 446, 145–153.

[26] Mousavi, S.M., Zarei, M., Hashemi, S.A., Ramakrishna, S., Chiang, W.H., Lai, C.W., Gholami, A., Omidifar, N., and Shokripour, M., 2020, Asymmetric membranes: A potential scaffold for wound healing applications, Symmetry, 12 (7), 1100.

[27] Ahmadi, S., 2020, Nanoparticles induced oxidative stress and related effects especially under exposure to electromagnetic radiations, Adv. Appl. NanoBio-Technol., 1 (4), 91–98.

[28] Moshfeghian, M., Azimi, H., Mahkam, M., Kalaee, M.R., Mazinani, S., and Mosafer, H., 2021, Effect of solution properties on electrospinning of polymer nanofibers: A study on fabrication of PVDF nanofiber by electrospinning in DMAC and (DMAC/Acetone) Solvents, Adv. Appl. NanoBio-Technol., 2 (2), 53–58.

[29] Ammar, M., Mohamed, H.S.H., Yousef, M.M.K., Abdel-Hafez, G.M., Hassanien, A.S., and Khalil, A.S.G., 2019, Dye-sensitized solar cells (DSSCs) based on extracted natural dyes, J. Nanomater., 2019, 1867271.

[30] Enciso, P., Decoppet, J.D., Grätzel, M., Wörner, M., Cabrerizo, F.M., and Cerdá, M.F., 2017, A Cockspur for The DSS cells: Erythrina crista-galli sensitizers, Spectrochim. Acta, Part A, 176, 91–98.

[31] Valaa, M., Krajčovič, J., Luňák, S., Ouzzane, I., Bouillon, J.P., and Weiter, M., 2014, HOMO and LUMO energy levels of N,N'-dinitrophenyl-substituted polar diketopyrrolopyrroles (DPPs), Dyes Pigm., 106, 136–142.

[32] Sinha, D., De, D., and Ayaz, A., 2018, Performance and stability analysis of curcumin dye as a photosensitizer used in nanostructured ZnO based DSSC, Spectrochim. Acta, Part A, 193, 467–474.

[33] Choi, M., Noh, Y., Kim, K., and Song, O., 2016, Properties of dye sensitized solar cells with porous TiO2 layers using polymethyl-methacrylate nano beads, Korean J. Mater. Res., 26 (4), 194–199.

[34] Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., and Irwan, Y.M., 2015, Potential of purple cabbage, coffee, blueberry and turmeric as natural dyes for dye sensitive solar cells (DSSC), Energy Procedia, 79, 799–807.

[35] Nilesh, P.N., Rajput, M.S., Prasad, R.G.S.V., and Ahmad, M., 2015, Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review, Asian Pac. J. Trop. Med., 8 (6), 421–430.

[36] Martín, J., Navas, M.J., Jiménez-Moreno, A.M., and Asuero, A.G., 2017, “Anthocyanin Pigments: Importance, Sample Preparation and Extraction” in Phenolic Compounds - Natural Sources, Importance and Applications, Eds. Soto-Hernandez, Palma-Tenango, M., and Garcia-Mateos, R., IntechOpen, Rijeka, Croatia.

[37] Priska, M., Peni, N., Carvallo, L., and Ngapa, Y.D., 2018, Review: Antosianin dan pemanfaatannya, Chakra Kimia, 6 (2), 79–97.

[38] Hutagalung, R.A., Victor, V., Karjadidjaja, M., Prasasty, V.D., and Mulyono, N., 2014, Extraction and characterization of bioactive compounds from cultured and natural sponge, Haliclona molitba and Stylotella aurantium origin of Indonesia, Int. J. Biosci., Biochem. Bioinf., 4 (1), 14–18.

[39] Jeyaram, S., and Geethakrishna, T., 2020, Vibrational spectroscopic, linear and nonlinear optical characteristics of Anthocyanins extracted from blueberry, Results Opt., 1, 100010.

[40] Hardeli, H., Suwardani, S., Riky, R., Fernando, T., Maulidis, M., and Ridwan, S., 2013, Dye sensitized solar cells (DSSC) berbasis nanopori TiO2 menggunakan antosianin dari berbagai sumber alami, Proceedings of the Semirata FMIPA, University of Lampung, 155–161.

[41] Ndeze, U.I., Aidan, J., Ezike, S.C., and Wansah, J.F., 2021, Comparative performances of nature-based dyes extracted from Baobab and Shea leaves photo-sensitizers for dye-sensitized solar cells (DSSCs), Curr. Res. Green Sustainable Chem., 4, 100105.

[42] Dahlan, D., Leng, T.S., and Aziz, H., 2016, Dye-sensitized solar cells (DSSC) dengan sensitizer dye alami daun pandan, akar kunyit dan biji beras merah (black rice), Jurnal Ilmu Fisika, 8 (1), 1–8.

[43] Imelda, I., and Putri, R.A., 2020, Optimalisasi struktur π-konjugasi pada zat warna organic tipe D-π-A, J. Res. Educ. Chem., 2 (2), 61–72.

[44] Maynez-Rojas, M.A., Casanova-González, E., and Ruvalcaba-Sil, J.L., 2017, Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy, Spectrochim. Acta, Part A, 178, 239–250.

[45] Prasad, G., Liang, J.W., Zhao, W., Yao, Y., Tao, T., Liang, B., and Lu, S.G., 2021, Enhancement of solvent uptake in porous PVDF nanofibers derived by a water-mediated electrospinning technique, J. Materiomics, 7 (2), 244–253.

[46] Sarker, S., Seo, H.W., and Kim, D.M., 2014, Calculating current density-voltage curves of dye-sensitized solar cells: A straight-forward approach, J. Power Sources, 248, 739-744.

[47] Kutlu, N., 2020, Investigation of electrical values of low-efficiency dye-sensitized solar cells (DSSCs), Energy, 199, 117222.

[48] Tractz, G.T., Viomar, A., Dias, B.V., de Lima, C.A., Banczek, E.P., da Cunha, M.T., Antunes, S.R.M., and Rodrigues, P.R.P., 2019, Recombination study of dye sensitized solar cells with natural extracts, J. Braz. Chem. Soc., 30 (2), 371–378.

[49] Omar, A., Ali, M.S., and Abd Rahim, N., 2020, Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review, Sol. Energy, 207, 1088–1121.

[50] Kim, K.H., Lee, S.M., Seo, M.H., Cho, S.E., Hwang, W.P., Park, S.H., Kim, Y.K., Lee, J.K., and Kim, M.R., 2012, Syntheses of organic dyes based on phenothiazine as photosensitizers and effects of their π-conjugated bridges on the photovoltaic performances of dye-sensitized solar cells, Macromol. Res., 20 (2), 128–137.

[51] Bakri, A.S., Sahdan, M.Z., Adriyanto, F., Raship, N.A., Said, N.D.M., Abdullah, S.A., and Rahim, M.S., 2017, Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties, AIP Conf. Proc., 1778, 030030.

[52] Shah, S., Noor, I.M., Pitawala, J., Albinson, I., Bandara, T.M.W.J., Mellander, B.E., and Arof, A.K., 2017, Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell, Opt. Mater. Express, 7 (6), 2069–2083.

[53] Selvanathan, V., Yahya, R., Alharbi, H.F., Alharthi, N.H., Alharthi, Y.S., Ruslan, M.H., Amin, N., and Akhtaruzzaman, M., 2020, Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties, Sol. Energy, 197, 144–153.

[54] Mokhtari, F., Latifi, M., and Shamshirsaz, M., 2015, Electrospinning/electrospray of polyvinylidene fluoride (PVDF): Piezoelectric nanofibers, J. Text. Inst., 107 (8), 1037–1055.

[55] Osman, Z., and Arof, A.K., 2003, FTIR studies of chitosan acetate-based polymer electrolytes, Elechtrochim. Acta, 48 (8), 993–999.

[56] Saha, S., Yauvana, V., Chakraborty, S., and Sanyal, D., 2019 Synthesis and characterization of polyvinylidene-fluoride (PVDF) nanofiber for application as piezoelectric force sensor, Mater. Today: Proc., 18, 1450–1458.

[57] Duh, Y.S., Lee, C.Y., Chen, Y.L., and Kao, C.S., 2016, Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC), Thermochim. Acta, 642, 88–94.

[58] Hofmann, A., Wang, Z., Bautista, S.P., Weil, M., Müller, F., Löwe, R., Schneider, L., Mohsin, I.U., and Hanemann, T., 2022, Dataset of propylene carbonate based liquid electrolyte mixture for sodium-ion cells, Data Brief, 40, 107775.

[59] Shalu, S., Singh, V.K., and Singh, R.K., 2015, Development of ion conducting electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties, J. Matter. Chem. C, 3 (28), 7305–7318.



DOI: https://doi.org/10.22146/ijc.75357

Article Metrics

Abstract views : 2577 | views : 1965


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.