Fabrication of Alginate-Based Electrospun Nanofibers for Carbon Dioxide Removal
Adhitasari Suratman(1*), Desi Nur Astuti(2), Ryan Jonathan(3), Agus Kuncaka(4), Yusril Yusuf(5)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
A fabrication of eco-friendly and low-cost adsorbent materials is reported for CO2 removal. Alginate nanofibers (NFs) adsorbents were prepared by incorporating poly(vinyl alcohol) (PVA) into alginate solutions via electrospinning technique from alginate biopolymers. Smooth-surfaced Alg/PVA NFs were obtained with a specific surface area of 9.197 m2 g–1. Zeolite (Z) was impregnated into polymer solutions to enhance the properties and performances of alginate nanofibers. Alg/PVA/Z NFs appeared to be rougher with a specific surface area of 25.998 m2 g–1. Both adsorbents offered great potential for CO2 adsorbent in the future. The adsorption isotherms of Alg/PVA NFs followed the Langmuir model with optimum CO2 adsorption capacity of 3.286 mmol g–1 and Alg/PVA/Z NFs followed Dubinin-Radushkevich model with optimum CO2 adsorption capacity of 10.710 mmol g–1.
Keywords
References
[1] NOAA/ESRL, 2022, National Oceanic & Atmospheric Administration (NOAA)/Earth System Research Laboratory (ESRL) - Trends in Atmospheric Carbon Dioxide, https://gml.noaa.gov/ccgg/trends/global.html, accessed on March 22, 2022.
[2] Hussin, F., and Aroua, M.K., 2020, Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018), J. Cleaner Prod., 253, 119707.
[3] Xue, J., Wu, T., Dai, Y., and Xia, Y., 2019, Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev., 119 (8), 5298–5415.
[4] Marin, L., Dragoi, B., Olaru, N., Perju, E., Coroaba, A., Doroftei, F., Scavia, G., Destri, S., Zappia, S., and Porzio, W., 2019, Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption, Eur. Polym. J., 120, 109214.
[5] Jiamjirangkul, P., Inprasit, T., Intasanta, V., and Pangon, A., 2020, Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration, Chem. Eng. Sci., 221, 115650.
[6] Lin, Y.F., Ye, Q., Hsu, S.H., and Chung, T.W., 2016, Reusable fluorocarbon-modified electrospun PDMS/PVDF nanofibrous membranes with excellent CO2 absorption performance, Chem. Eng. J., 284, 888–895.
[7] Zainab, G., Iqbal, N., Babar, A.A., Huang, C., Wang, X., Yu, J., and Ding, B., 2017, Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture, Compos. Commun., 6, 41–47.
[8] Olivieri, L., Roso, M., De Angelis, M.G., and Lorenzetti, A., 2018, Evaluation of electrospun nanofibrous mats as materials for CO2 capture: a feasibility study on functionalized poly(acrylonitrile) (PAN), J. Membr. Sci., 546, 128–138.
[9] Zainab, G., Babar, A.A., Iqbal, N., Wang, X., Yu, J., and Ding, B., 2018, Amine-impregnated porous nanofiber membranes for CO2 capture, Compos. Commun., 10, 45–51.
[10] Hong, S.M., Kim, S.H., Jeong, B.G., Jo, S.M., and Lee, K.B., 2014, Development of porous carbon nanofibers from electrospun polyvinylidene fluoride for CO2 capture, RSC Adv., 4 (103), 58956–58963.
[11] Nan, D., Liu, J., and Ma, W., 2015, Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption, Chem. Eng. J., 276, 44–50.
[12] Heo, Y.J., Zhang, Y., Rhee, K.Y., and Park, S.J., 2019, Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture, Composites, Part B, 156, 95–99.
[13] Chiang, Y.C., Wu, C.Y., Chen, Y.J., 2020, Effects of activation on the properties of electrospun carbon nanofibers and their adsorption performance for carbon dioxide, Sep. Purif. Technol., 233, 116040.
[14] Zainab, G., Babar, A.A., Ali, N., Aboalhassan, A.A., Wang, X., Yu, J., and Ding, B., 2020, Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption, J. Colloid Interface Sci., 561, 659–667.
[15] Zhang, Y., Zhang, Y., Wang, X., Yu, J., and Ding, B., 2018, Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability, ACS Appl. Mater. Interfaces, 10 (40), 34802–34810.
[16] Choi, C., Kadam, R.L., Gaikwad, S., Hwang, K.S., and Han, S., 2020, Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture, Microporous Mesoporous Mater., 296, 110006.
[17] Zhang, Y., Guan, J., Wang, X., Yu, J., and Ding, B., 2017, Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture, ACS Appl. Mater. Interfaces, 9 (46), 41087–41098.
[18] Abbasi, A., Nasef, M.M., Kheawhom, S., Faridi-Majidi, R., Takeshi, M., Abouzari-Lotf, E., and Choong, T., 2019, Amine functionalized radiation induced grafted polyolefin nanofibers for CO2 adsorption, Radiat. Phys. Chem., 156, 58–66.
[19] Iqbal, N., Wang, X., Babar, A.A., Yu, J., and Ding, B., 2016, Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes, J. Colloid Interface Sci., 476, 87–93.
[20] Ali, N., Babar, A.A., Zhang, Y., Iqbal, N., Wang, X., Yu, J., and Ding, B., 2020, Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture, J. Colloid Interface Sci., 560, 379–387.
[21] Jain, R., Shetty, S., and Yadav, K.S., 2020, Unfolding the electrospinning potential of biopolymers for preparation of nanofibers, J. Drug Delivery Sci. Technol., 57, 101604.
[22] FAO, 2018, The Global Status of Seaweed Production, Trade and Utilization, Globefish Research Programme, Volume 124, Food Agriculture Organization, Rome.
[23] Anonymous, 2019, Peraturan Presiden Republik Indonesia No. 3 Tahun 2019 tentang Peta Panduan (Road map) Pengembangan Industri Rumput Laut Nasional Tahun 2018-2021, Ministry of State Secretariat of the Republic of Indonesia, Jakarta.
[24] Zhu, Y., Wang, Z., Zhang, C., Wang, J., and Wang, S., 2013, A novel membrane prepared from sodium alginate cross-linked with sodium tartrate for CO2 capture, Chin. J. Chem. Eng., 21 (10), 1098–1105.
[25] Rošic, R., Pelipenko, J., Kocbek, P., Baumgartner, S., Bešter-Rogač, M., and Kristl, J., 2012, The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning, Eur. Polym. J., 48 (8), 1374–1384.
[26] Mirtič, J., Balažic, H., Zupančič, Š., and Kristl, J., 2019, Effect of solution composition variables on electrospun alginate nanofibers: Response surface analysis, Polymers, 11, 692.
[27] Abd, A.A., Naji, S.Z., Hashim, A.S., and Othman, M.R., 2020, Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review, J. Environ. Chem. Eng., 8 (5), 104142.
[28] Kim, H.G., and Kim, J.H., 2011, Preparation and properties of antibacterial poly(vinyl alcohol) nanofibers by nanoparticles, Fibers Polym., 12 (5), 602.
[29] Nawawi, M.S., Ahmad, M.R., Affandi, N.D.N., Sekak, K.A., and Ahmad, W.Y.W., 2013, Effect of zeolite presence and voltage variance on the fiber diameter of microporous PVA/zeolite nanofibrous membrane, 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC 2013), Institute of Electrical and Electronics Engineers (IEEE) Langkawi, Malaysia, 344–348.
[30] Kang, D.H., and Kang, H.W., 2016, Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process, Appl. Surf. Sci., 387, 82–88.
[31] Anis, S.F., and Hashaikeh, R., 2016, Electrospun zeolite-Y fibers: Fabrication and morphology analysis, Microporous Mesoporous Mater., 233, 78–86.
[32] Anis, S.F., Khalil, A., Saepurahman, Singaravel, G., and Hashaikeh, R., 2016, A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications, Microporous Mesoporous Mater., 236, 176–192.
[33] Bahi, A., Shao, J., Mohseni, M., and Ko, F.K., 2017, Membranes based on electrospun lignin-zeolite composite nanofibers, Sep. Purif. Technol., 187, 207–213
[34] Habiba, U., Afifi, A.M., Salleh, A., and Ang, B.C., 2017, Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+, J. Hazard. Mater., 322, 182–194.
[35] Ji, S.H., Cho, J.H., Jeong, Y.H., Yun, J.D., and Yun, J.S., 2017, The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process, Appl. Surf. Sci., 416, 178–182.
[36] Ojstršek, A., Fakin, D., Hribernik, S., Fakin, T., Bračič, M., and Kurečič, M., 2020, Electrospun nanofibrous composites from cellulose acetate/ ultra-high silica zeolites and their potential for VOC adsorption from air, Carbohydr. Polym., 236, 116071.
[37] Islam, M.S., and Karim, M.R., 2010, Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method, Colloids Surf., A, 366 (1-3), 135–140.
[38] Shalumon, K.T., Anulekha, K.H., Nair, S.V., Nair, S.V., Chennazhi, K.P., and Jayakumar, R., 2011, Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings, Int. J. Biol. Macromol., 49 (3), 247–254.
[39] Mozgawa, W., Król, M., and Barczyk, K., 2011, FT-IR studies of zeolites from different structural groups, Chemik, 65 (7), 671–674.
[40] Pham, T.H., Lee, B.K., Kim, J., and Lee, C.H., 2016, Enhancement of CO2 capture by using synthesized nano-zeolite, J. Taiwan Inst. Chem. Eng., 64, 220–226.
[41] Pelipenko, J., Kocbek, P., and Kristl, J., 2015, Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration, Int. J. Pharm., 484 (1-2), 57–74.
[42] Balgis, R., Kartikowati, C.W., Ogi, T., Gradon, L., Bao, L., Seki, K., and Okuyama, K., 2015, Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration, Chem. Eng. Sci., 137, 947–954.
[43] Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M., and Baltrusaitis, J., 2014, Design and characterization of electrospun polyamide nanofiber media for air filtration applications, J. Nanomater., 2014, 859656.
[44] Kazarian, S.G., Vincent, M.F., Bright, F.V., Liotta, C.L., and Eckert, C.A., 1996, Specific intermolecular interaction of carbon dioxide with polymers, J. Am. Chem. Soc., 118 (7), 1729–1736.
[45] Zhao, L., Chen, Y., Wang, B., Sun, C., Chakraborty, S., Ramasubramanian, Dutta, P.K., and Ho, W.S.W., 2016, Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas, J. Membr. Sci., 498, 1–13.
[46] Ayawei, N., Ebelegi, A.N., and Wankasi, D., 2017, Modelling and interpretation of adsorption isotherms, J. Chem., 2017, 3039817.
[47] Raganati, F., Alfe, M., Gargiulo, V., Chirone, R., and Ammendola, P., 2018, Isotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent, Chem. Eng. Res. Des., 134, 540–552.
DOI: https://doi.org/10.22146/ijc.67349
Article Metrics
Abstract views : 4149 | views : 2380 | views : 1066Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.