An Electrochemical Aptasensor for the Detection of HER2 as a Breast Cancer Biomarker Based on Gold Nanoparticles-Aptamer Bioconjugates

https://doi.org/10.22146/ijc.67124

Yeni Wahyuni Hartati(1*), Sari Syahruni(2), Shabarni Gaffar(3), Santhy Wyantuti(4), Muhammad Yusuf(5), Toto Subroto(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


Inaccurate diagnoses contributes to the high mortality rate of breast cancer. Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer tumors at around 20–30%. This study aims to develop an electrochemical biosensor for HER2 based on a gold nanoparticle-aptamer bioconjugate (AuNP@HER2 aptamer) and investigate the interaction between DNA aptamer and HER2 using computational methods. The bioconjugate was synthesized using maleimide and polyethylene glycol as a linker. The –NH2 group of cysteamine that modified the gold electrode can form a covalent bond with the bioconjugate maleimide. The interaction of the bioconjugated aptamer with HER2 was measured electrochemically based on the [Fe(CN)6]3−/4− redox system. The limit of detection, the linear range of HER2, precision, and accuracy in this study were 1.52 ng mL–1, 0.01 to 15.0 ng mL–1, 0.1298, and 94.06%, respectively. The structure of the DNA aptamer was modeled using mFold, Assemble2, and Chimera, with the interaction between the DNA aptamer and HER2 explored by NPDock. The modeling of the aptamer with HER2 showed that electrostatic interactions dominated the attractive forces. The resulting interaction pattern can be used as a template to improve the binding energy of the aptamer, thus providing insight into the development of aptamer-based biosensors.

Keywords


electrochemical aptasensor; HER2; aptamer; voltammetry; molecular modeling; breast cancer



References

[1] WHO, 2014, Cancer Country Profile, World Health Organization, Geneva, Switzerland.

[2] American Cancer Society, 2020, Understanding a Breast Cancer Diagnosis: Survival Rates for Breast Cancer, https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html, accessed on October 8, 2020.

[3] Bezerra, G., Córdula, C., Campos, D., Nascimento, G., Oliveira, N., Seabra, M.A., Visani, V., Lucas, S., Lopes, I., Santos, J., Xavier, F., Borba, M.A., Martins, D., and Lima-Filho, J., 2019, Electrochemical aptasensor for the detection of HER2 in human serum to assist in the diagnosis of early stage breast cancer, Anal. Bioanal. Chem., 411 (25), 6667–6676.

[4] Zhang, X.H., and Xiao, C., 2018, Diagnostic value of nineteen different imaging methods for patients with breast cancer: A network meta-analysis, Cell. Physiol. Biochem., 46 (5), 2041–2055.

[5] Khanjani, F., Sajedi, R.H., and Hasannia, S., 2018, Rapid screening of drug candidates against EGFR/HER2 signaling pathway using fluorescence assay, Anal. Bioanal. Chem., 410 (30), 7827–7835.

[6] Arya, S.K., Zhurauski, P., Jolly, P., Batistuti, M.R., Mulato, M., and Estrela, P., 2018, Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum, Biosens. Bioelectron., 102, 106–112.

[7] Vondeling, G.T., Menezes, G.L., Dvortsin, E.P., Jansman, F.G.A., Konings, I.R., Postma, M.J., and Rozenbaum, M.H., 2018, Burden of early, advanced and metastatic breast cancer in The Netherlands, BMC Cancer, 18 (1), 262.

[8] Huang, Y., Xu, J., Liu, J., Wang, X., and Chen, B., 2017, Disease-related detection with electrochemical biosensors: A review, Sensors, 17 (10), 2375.

[9] Lai, C., Liu, S., Zhang, C., Zeng, G., Huang, D., Qin, L., Liu, X., Yi, H., Wang, R., Huang, F., Li, B., and Hu, T., 2018, Electrochemical aptasensor based on sulfur–nitrogen codoped ordered mesoporous carbon and thymine–Hg2+–thymine mismatch structure for Hg2+ detection, ACS Sens., 3 (12), 2566–2573.

[10] Liu, S., Lai, C., Liu, X., Li, B., Zhang, C., Qin, L., Huang, D., Yi, H., Zhang, M., Li, L., Wang, W., Zhou, X., and Chen, L., 2020, Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing, Coord. Chem. Rev., 424, 213520.

[11] Hartati, Y.W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., and Subroto, T., 2020, A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension, Sens. Bio-Sens. Res., 29, 100343.

[12] Cai, G., Yu, Z., Ren, R., and Tang, D., 2018, Exciton–plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen, ACS Sens., 3 (3), 632–639.

[13] Hartati, Y.W., Komala, D.R., Hendrati, D., Gaffar, S., Hardianto, A., Sofiatin, Y., and Bahti, H.H., 2021, An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker, R. Soc. Open Sci., 8 (2), 202040.

[14] Parashar A., 2016, Aptamers in therapeutics, J. Clin. Diagn. Res.,10 (6), BE01–BE06.

[15] Kinghorn, A.B., and Tanner, J.A., 2017, Selective phenome growth adapted model: A novel landscape to represent aptamer ligand binding, Complexity, 2017, 6760852.

[16] Trausch, J.J., Shank-Retzlaff, M., and Verch, T., 2017, Replacing antibodies with modified DNA aptamers in vaccine potency assays, Vaccine, 35 (41), 5495–5502.

[17] Drabovich, A.P., Berezovski, M., Okhonin, V., and Krylov, S.N., 2006, Selection of smart aptamers by methods of kinetic capillary electrophoresis, Anal. Chem., 78 (9), 3171–3178.

[18] Yufa, R., Krylova, S.M., Bruce, C., Bagg, E.A., Schofield, C.J., and Krylov, S.N., 2015, Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: Allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein, Anal. Chem., 87 (2), 1411–1419.

[19] Chun, L., Kim, S.E., Cho, M., Choe, W.S., Nam, J., Lee, D.W., and Lee, Y., 2013, Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode, Sens. Actuators, B, 186, 446–450.

[20] Bang, G.S., Cho, S., Lee, N., Lee, B.R., Kim, J.H., and Kim, B.G., 2013, Rational design of modular allosteric aptamer sensor for label-free protein detection, Biosens. Bioelectron., 39 (1), 44–50.

[21] Komala, D.R., Hardianto, A., Gaffar, S., and Hartati, Y.W., 2021, An epithelial sodium channel (ENaC)-specific aptamer determined through structure-based virtual screening for the development of hypertension early detection system, Pharm. Sci., 27 (1), 67–75.

[22] Şahin, S., Caglayan, M.O., and Üstündağ, Z., 2020, Recent advances in aptamer-based sensors for breast cancer diagnosis: Special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors, Microchim. Acta, 187 (10), 549.

[23] Ferreira, D.C., Batistuti, M.R., Junior, B.B., and Mulato, M., 2021, Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum, Bioelectrochemistry, 137, 107586.

[24] Gu, C., Guo, C., Li, Z., Wang, M., Zhou, N., He, L., Zhang, Z., and Du, M., 2019, Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells, Biosens. Bioelectron., 134, 8–15.

[25] Yang, S., You, M., Zhang, F., Wang, Q., and He, P., 2018, A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2, Sens. Actuators, B, 258, 796–802.

[26] Qureshi, A., Gurbuz, Y., and Niazi, J.H., 2015, Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum, Sens. Actuators, B, 220, 1145–1151.

[27] Ou, D., Sun, D., Lin, X., Liang, Z., Zhong, Y., and Chen, Z., 2019, A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures, J. Mater. Chem. B, 7 (23), 3661–3669.

[28] Poturnayová, A., Dzubinová, Ľ., Buríková, M., Bízik, J., and Hianik, T., 2019, Detection of breast cancer cells using acoustics aptasensor specific to HER2 receptors, Biosensors, 9 (2), 72.

[29] Chen, D., Wang, D., Hu, X., Long, G., Zhang, Y., and Zhou, L., 2019, A DNA nanostructured biosensor for electrochemical analysis of HER2 using bioconjugate of GNR@ Pd SSs—Apt—HRP, Sens. Actuators, B, 296, 126650.

[30] Hermanson, G.T., 2013, Bioconjugate Techniques, 3rd Ed., Academic Press, Cambridge, US.

[31] Hartati, Y.W., Nurdjanah, D., Wyantuti, S., Anggraeni, A., and Gaffar, S., 2018, Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates, AIP Conf. Proc., 2049, 020051.

[32] Emami, M., Shamsipur, M., Saber, R., and Irajirad, R., 2014, An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates, Analyst, 139 (11), 2858–2866.

[33] Hartati, Y.W., Letelay, L.K., Gaffar, S., Wyantuti, S., and Bahti, H.H., 2020, Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker, Sens. Bio-Sens. Res., 27, 100316.

[34] Zuker, M., 2003, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31(13), 3406–3415.

[35] Jeddi, I., and Saiz, L., 2017, Three-dimensional modeling single stranded DNA hairpins for aptamer-based biosensor, Sci Rep., 7 (1), 1178.

[36] Jossinet, F., Ludwig, T.E., and Westhof, E., 2010, Assemble: An interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels, Bioinformatics, 26 (16), 2057–2059.

[37] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004, UCSF Chimera–A visualization system for exploratory research and analysis, J. Comput. Chem., 25(13), 1605–1612.

[38] BIOVIA, Dassault Systèmes 2016, BIOVIA Discovery Studio Visualizer 4.5, v.16.1.0.15350, Dassault Systèmes, San Diego.

[39] Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A., 2004, PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res., 32 (Suppl. 2), W665–W667.

[40] Tuszynska, I., Magnus, M., Jonak, K., Dawson, W., and Bujnicki, J.M., 2015, NPDock: A web server for protein-nucleic acid docking, Nucleic Acids Res., 43 (W1), W425–W430.

[41] Miller, J.N., and Miller, J.C., 2005, Statistics and Chemometrics for Analytical Chemistry, 5th Ed., Pearson Prentice Hall, England.

[42] Hartati, Y.W., Beladona, S.U.M., Wyantuti, S., and Gaffar, S., 2018, A voltammetric immunosensor for detection of HER2 using gold modified-screen printed carbon electrode, Res. J. Chem. Environ., 22, 294–301.

[43] Al-Khafaji, Q.A.M., Harris, M., Tombelli, S., Laschi, S., Turner, A.P.F., Mascini, M., and Marazza, G., 2012, An Electrochemical immunoassay for HER2 detection, Electroanalysis, 24 (4), 735–742.

[44] Kim, S.E., and Choe, W.S., 2011, Screening of ssDNA aptamers for HER2 ECD protein, Proc. Korean Soc. Biotechnol. Bioeng., 291.



DOI: https://doi.org/10.22146/ijc.67124

Article Metrics

Abstract views : 3462 | views : 2909 | views : 986


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.