Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid Coformer

https://doi.org/10.22146/ijc.35801

Yudi Wicaksono(1), Dwi Setyawan(2), Siswandono Siswandono(3), Tri Agus Siswoyo(4*)

(1) Faculty of Pharmacy, University of Jember, Jl. Kalimantan I/2, Jember 68121, Indonesia
(2) Faculty of Pharmacy, Airlangga University, Jl. Darmawangsa Dalam 4-6, Surabaya 60286, Indonesia
(3) Faculty of Pharmacy, Airlangga University, Jl. Darmawangsa Dalam 4-6, Surabaya 60286, Indonesia
(4) Faculty of Agriculture, University of Jember, Jl. Kalimantan No. 37, Jember 68121, Indonesia
(*) Corresponding Author

Abstract


Preparation and characterization of a novel cocrystal of atorvastatin calcium with succinic acid coformer were successfully performed. This research aims to modify the crystalline form of atorvastatin calcium through cocrystallization with succinic acid coformer. The cocrystal was prepared by a solvent evaporation method and characterized by Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The atorvastatin calcium-succinic acid cocrystal has new crystalline peaks at 2θ of 12.9, 18.2 and 26.7° indicating the formation of a new crystalline phase. The cocrystal showed the melting point at 205.7 °C with an enthalpy of fusion 30.2 J/g which is different from the initial components. The FTIR spectra of cocrystal showed the shifting of absorption peaks of groups of initial components indicating of formation of atorvastatin calcium-succinic acid cocrystal through acid–amide intermolecular hydrogen bond interactions. The solubility and dissolution test showed that the cocrystal has solubility and dissolution rate significantly higher than the solubility and dissolution rate of pure atorvastatin calcium.


Keywords


novel cocrystal; atorvastatin calcium; crystalline phase; solubility; dissolution rate

Full Text:

Full Text PDF


References

[1] Kadu, P.J., Kushare, S.S., Thacker, D.D., and Gattani, S.G., 2011, Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS), Pharm. Dev. Technol., 16 (1), 65–74.

[2] Gao, J., Guo, Y.H., Wang, Y.P., Wang, X.J., and Xiang, W.S., 2011, A novel and efficient route for the preparation of atorvastatin, Chin. Chem. Lett., 22 (10), 1159–1162.

[3] Skorda, D., and Kontoyannis, C.G., 2008, Identification and quantitative determination of atorvastatin calcium polymorph in tablets using FT-Raman spectroscopy, Talanta, 74 (4), 1066–1070.

[4] An, S.G., Sohn, Y.T., 2009, Crystal forms of atorvastatin, Arch. Pharmacal. Res., 32 (6), 933–936.

[5] Shayanfar, A., Ghavimi, H., Hamishekar, H., and Jouyban, A., 2013, Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties, J. Pharm. Pharm. Sci., 16 (4), 577–587.

[6] Chadha, R., Kuhad, A., Arora, P., and Kishor, S., 2012, Characterisation and evaluation of pharmaceutical solvates of atorvastatin calcium by thermoanalytical and spectroscopic studies, Chem. Cent. J., 6 (1), 114.

[7] Kim, J.S., Kim, M.S., Park, H.J., Jin, S.J., Lee, S., and Hwang, S.J., 2008, Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process, Int. J. Pharm., 359 (1-2), 211–219.

[8] Rao V.P.R., Somannavar, Y.S., Kumar N.S., Reddy, S.B., Islam, A., and Babu B.H., 2011, Preparation of stable new polymorphic form of atorvastatin calcium, Pharm. Lett., 3 (5), 48–53.

[9] Wicaksono, Y., Setyawan, D., and Siswandono, 2017, Formation of ketoprofen-malonic acid cocrystal by solvent evaporation method, Indones. J. Chem., 17 (2), 161–166.

[10] Ainurofiq, A., Mauludin, R., Mudhakir, D., and Soewandhi, S.N., 2018, Synthesis, characterization, and stability study of desloratadin multicomponent crystal formation, Res. Pharm. Sci., 13 (2), 93–102.

[11] Wicaksono, Y., Wisudyaningsih, B., and Siswoyo, T.A., 2017, Enhancement of solubility and dissolution rate of atorvastatin calcium by co-crystallization, Trop. J. Pharm. Res., 16 (7), 1497–1502.

[12] Tsutsumi, S., Iida, M., Tada, N., Kojima, T., Ikeda, Y., Moriwaki, T., Higashi, K., Moribe, K., and Yamamoto, K., 2011, Characterization and evaluation of miconazole salts and co-crystals for improved physicochemical properties, Int. J. Pharm., 421 (2), 230–236.

[13] Surov, O., Volkova, T.V., Churakov, A.V., Proshin, A.N., Terekhova, I.V., and Perlovich, G.L., 2017, Cocrystal formation, crystal structure, solubility and permeability studies for novel 1,2,4-thiadiazole derivative as a potent neuroprotector, Eur. J. Pharm. Sci., 109, 31–39.

[14] Moradiya, H., Islam, M.T., Woollam, G.R., Slipper, I.J., Halsey, S., Snowden, M.J., and Douroumis, D., 2014, Continuous co-crystallization for dissolution rate optimization of a poorly water-soluble drug, Cryst. Growth Des., 14 (1), 189–198.

[15] Shevchenko, A., Bimbo, L.M., Miroshnyk, I., Haarala, J., Jelínková, K., Syrjänen, K., Veen, B., Kiesvaara, J. Santos, H.A., and Yliruusi, J., 2012, A new cocrystal and salts of itraconazole: Comparison of solid-state properties, stability and dissolution behavior, Int. J. Pharm., 436 (1-2), 403–409.

[16] Zeng, Q.Z., Ouyang, J., Zhang, S., and Zhang, L., 2017, Structural characterization and dissolution profile of mycophenolic acid cocrystals, Eur. J. Pharm. Sci., 102, 140–146.

[17] Chadha, R., Bhandari, S., Haneef, J., Khullar S., and Mandal, S., 2014, Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies, CrystEngComm, 16 (36), 8375–8389.

[18] Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., and Trappitt, G., 2011, Pharmaceutical co-crystals: An overview, Int. J. Pharm., 419 (1-2), 1–11.

[19] Félix-Sonda, B.C., Rivera-Islas, J., Herrera-Ruiz, D., Morales-Rojas, H., and Höpfl, H., 2013, Nitazoxanide cocrystals in combination with succinic, glutaric, and 2,5-dihydroxybenzoic acid, Cryst. Growth Des., 14 (3), 1086–1102.

[20] Jung, S., Ha, J.M., and Kim, W.I., 2014, Phase transformation of adefovir dipivoxil/succinic acid cocrystals regulated by polymeric additives, Polymers, 6 (1), 1–11.

[21] Lahtinen, M., Kolehmainen, E., Haarala, J., and Shevchenko, A., 2013, Evidence of weak halogen bonding: New insights on itraconazole and its succinic acid cocrystal, Cryst. Growth Des., 13 (1), 346–351.

[22] Pindelska, E., Sokal, A., and Kolodziejski, W., 2017, Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques, Adv. Drug Delivery Rev., 117, 111–146.

[23] Shete, G., Puri, V., Kumar, L., and Bansal, A., 2010, Solid state characterisation of commercial crystalline and amorphous atorvastatin calcium samples, AAPS PharmSciTech, 11 (2), 598–609.

[24] Chadha, R., Bhalla, Y., Nandan, A., Chadha, K., and Karan, M., 2017, Chrysin cocrystals: Characterization and evaluation, J. Pharm. Biomed. Anal., 134, 361–371.

[25] Sangeetha, M., and Mathammal, R., 2017, Establishment of the structural and enhanced physicochemical properties of the cocrystal-2-benzyl amino pyridine with oxalic acid, J. Mol. Struct., 1143, 192–203.

[26] Thomas, V.H., Bhattachar, S., Hitchingham, L., Zocharski, P., Naath, M., Surendran, N., Stoner, C.L., and El-Kattan, A., 2006, The road map to oral bioavailability: An industrial perspective, Expert Opin. Drug Metab. Toxicol., 2 (4), 591–608.

[27] Silva, E.P., Pereira, M.A.V., Lima, I.P.B., Lima, N.G.P.B., Barbosa, E.U., Aragao, C.F.S., and Gomes, A.P.B., 2016, Compatibility study between atorvastatin and excipients using DSC and FTIR, J. Therm. Anal. Calorim., 123 (2), 433–439.

[28] Ober, C.A., and Gupta, R.B., 2012, Formation of itraconazole–succinic acid cocrystals by gas antisolvent cocrystallization, AAPS PharmSciTech, 13 (4), 1396–1406.

[29] Gao, Y., Gao, J., Liu, Z., Kan, H., Zu, H., Sun, W., Zhang, W., and Qian, S., 2012, Coformer selection based on degradation pathway of drugs: A case study of adefovir dipivoxil–saccharin and adefovir dipivoxil–nicotinamide cocrystals, Int. J. Pharm., 438 (1-2), 327–335.

[30] Babu, N.J., Sanphui, P., and Nangia, A., 2012, Crystal engineering of stable temozolomide co-crystals, Chem. Asian J., 7 (10), 2274–2285.

[31] Kim, M.S., Jin, S.J., Kim, J.S., Park, H.J., Song, H.S., Neubert, R.H.H., and Hwang, S.J., 2008, Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process, Eur. J. Pharm. Biopharm., 69 (2), 454–465.

[32] Hsu, P.C., Lin, H.L., Wang, S.L., and Lin, S.Y., 2012, Solid-state thermal behavior and stability studies of theophylline-citric acid co-crystals prepared by neat cogrinding or thermal treatment, J. Solid State Chem., 192, 238–245.

[33] Jahan, R., Islam, M.S., Tanwir, A., and Chowdhury, J.A., 2013, In vitro dissolution study of atorvastatin binary solid dispersion, J. Adv. Pharm. Technol. Res., 4 (1), 18–24.

[34] Thakuria, R., Delori, A., Jones, W., Lipert, M.P., Roy, L., and Rodríguez-Hornedo, N., 2013, Pharmaceutical co-crystals and poorly soluble drugs, Int. J. Pharm., 453 (1), 101–125.



DOI: https://doi.org/10.22146/ijc.35801

Article Metrics

Abstract views : 7955 | views : 6638


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.