Synthesis and Photoactivity of Fe3O4/TiO2-Co as a Magnetically Separable Visible Light Responsive Photocatalyst
Eko Sri Kunarti(1*), Indriana Kartini(2), Akhmad Syoufian(3), Karolina Martha Widyandari(4)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1), 69–96.
[2] Yin, S., Liu, B., Zhang, P., Morikawa, T., Yamanaka, K., and Sato, T., 2008, Photocatalytic oxidation of under visible led light irradiation over nitrogen-doped titania particles with iron or platinum loading, J. Phys. Chem. C, 112 (32), 12425–12431.
[3] Qiu, R., Zhang, D., Diao, Z., Huang, X., He, C., Morel, J.L., and Xiong, Y., 2012, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res., 46 (7), 2299–2306.
[4] Shen, Y., Xiong, T., Du, H., Jin, H., Shang, J., and Yang, K., 2009, Phosphorous, nitrogen, and molybdenum ternary co-doped TiO2: Preparation and photocatalytic activities under visible light, J. Sol-Gel Sci. Technol., 50 (1), 98–102.
[5] Xu, C., Rangaiah, G.P., and Zhao, X.S., 2014, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study, Ind. Eng. Chem. Res., 53 (38), 14641–14649.
[6] Kunarti, E.S., Syoufian, A., Budi, I.S., and Pradipta, A.R., 2016, Preparation and properties of Fe3O4/SiO2/TiO2 core-shell nanocomposite as recoverable photocatalyst, Asian J. Chem., 28 (6), 1343–1346.
[7] Daghrir, R., Drogui, P., and Robert, D., 2013, Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res., 52 (10), 3581–3599.
[8] Kumar, S.G., and Devi, L.G., 2011, Review on modified TiO2 photocatalysis under UV/visible light: Selected result and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115 (46), 13211–13241.
[9] Chen, X., and Mao, S.S., 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (7), 2891–2959.
[10] Choi, J., Park, H., and Hoffmann, M.R., 2010, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2, J. Phys. Chem. C, 114 (2), 783–792.
[11] Hamal, D.B., and Klabunde, K.J., 2011, Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light, J. Phys. Chem. C, 115 (35), 17359–17367.
[12] Pozzo, R.L., Baltanás, M.A., and Cassano, A.E., 2010, Supported titanium dioxide as photocatalyst in water decontamination: State of the art, Catal. Today, 39 (3), 219–231.
[13] Liu, H., He, Y., and Liang, X., 2013, Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity, J. Mater. Res., 29 (1), 98–106.
[14] Widyandari, K.M., 2016, Sintesis Nanokomposit Fe3O4/TiO2-Co dan Uji Aktivitasnya sebagai Fotokatalis, Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta.
[15] Chatti, R., Rayalu, S.S., Dubey, N., Labhsetwar, N., and Devotta, S., 2007, Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials, Sol. Energy Mater. Sol. Cells, 91 (2-3), 180–190.
[16] Hamadanian, M., Reisi-Vanani, A., and Majedi, A., 2010, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: applications to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (Suppl. 2), S52–S58.
[17] Mital, G.S., and Manoj, T., 2011, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56 (16), 1639–1657.
[18] Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., and Trapalis, C., 2009, Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles, J. Hazard. Mater., 170 (2-3), 836–844.
[19] Abkenar, S.D., 2016, Application of magnetic-modified Fe3O4 nanoparticles for removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies, J. Appl. Chem. Res., 10 (1), 65–74.
DOI: https://doi.org/10.22146/ijc.26831
Article Metrics
Abstract views : 4021 | views : 4079Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.