Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

https://doi.org/10.22146/ijc.21259

Saprizal Hadisaputra(1), Lorenz R Canaval(2), Harno Dwi Pranowo(3*), Ria Armunanto(4)

(1) Chemistry Education Division, Faculty of Teacher Training and Science Education, Universitas Mataram, Jl. Majapahit 62, Mataram 83251
(2) Division of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck
(3) Austrian Indonesian Centre for Computational Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(4) Austrian Indonesian Centre for Computational Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L) toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3-) have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

Keywords


DFT; crown ether; counterion; solvent; temperature

Full Text:

Full Text Pdf


References

[1] Pedersen, C.J., 1967, J. Am. Chem. Soc., 89 (26), 7017–7036.

[2] Pedersen, C.J., 1967, J. Am. Chem. Soc., 89 (10), 2495–2496.

[3] Vögtle, F., and Weber E, 1989, Crown Ethers and Analogs, John Wiley & Sons: New York.

[4] Jensen, M.P., Dzielawa, J.A., Ricket, P., and Dietz, M.L., 2002, J. Am. Chem. Soc., 124 (36), 10664–10665.

[5] Ansarifard, M., and Rounaghi, G.H., 2005, J. Inclusion Phenom. Macrocyclic Chem., 52 (1-2), 39–44.

[6] Rounaghi, G., Eshaghi, Z., and Ghiamati, E., 1997, Talanta, 44 (2), 275–282.

[7] Rounaghi, G.H., Mohajeri, M., Tarahomi, S., and Rahmanian, R., 2010, J. Solution Chem., 40 (3), 377–389.

[8] Rounaghi, G.H., Soleamani, A., and Sanavi, K.R., 2007, J. Inclusion Phenom. Macrocyclic Chem., 58 (1-2), 43–50.

[9] Glendening, E.D., and Feller, D., 1996, J. Am. Chem. Soc., 118 (25), 6052–6059.

[10] Choi, C.M., Lee, J.H., Choi, Y.H., Kim, H.J., Kim, N.J., and Heo, J., 2010, J. Phys. Chem. A, 114 (42), 11167–11174.

[11] Boda, A., Ali, S.M., Shenoi, M.R.K., Rao, H., and Ghosh, S.K., 2011, J. Mol. Model. 17 (5), 1091–1108.

[12] Hadisaputra, S., Canaval, L.R., Pranowo, H.D., and Armunanto, R., 2014, Monatsh. Chem., 145 (5), 737–745.

[13] Yamin, Pranowo, H.D., and Armunanto, R., 2010, Indo. J. Chem., 10 (1), 106–109.

[14] Yamin, Pranowo, H.D., and Armunanto, R., 2012, Indo. J. Chem., 12 (2), 135–140.

[15] Diao, K.S., Bai, L.J., and Wang, H.J., 2011, Comput. Theor. Chem., 964 (1-3), 18–24.

[16] Xia, Y., Wang, X., Zhang, Y., Luo, B., and Liu, Y., 2012, J. Mol. Model., 18 (6), 2291–2299.

[17] Heo, J., 2012, Bull. Korean. Chem. Soc., 33 (8), 2669–2674.

[18] Boda, A., Ali, S.M., Shenoi, M.R.K., Rao, H., and Ghosh, S.K., 2012, J. Mol. Model., 18 (8), 3507–3522.

[19] Hadisaputra, S., Pranowo, H.D., and Armunanto, R., 2012, Indo. J. Chem., 12 (3), 207–216.

[20] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., 2003, Gaussian 2003W rev. B.05., Gaussian Inc., Pittsburgh.

[21] Boys, S.F., and Bernardi, F., 1970, Mol. Phys., 19 (4), 533–566.

[22] Shamov, G.A., Schreckenbach, G., Martin, R.L., and Hay, P.J., 2008, Inorg. Chem., 47 (5), 1465–1475.

[23] Thompson, J.D., Cramer, C.J., and Truhlar. D.G., 2003, J. Chem. Phys., 119 (3), 1661–1670.

[24] Pratt, L.M., Tran, P.T.T., Nguyen, N.V., and Ramachandran, B., 2009, Bull. Chem. Soc. Jpn., 82 (9), 1107–1125.

[25] Polyanskaya, T.M, Rozhdestvenskaya, I.V., and Nikulina, L.D. 1994, J. Struct. Chem., 35 (3), 324–333.

[26] Dunitz, J.D., and Seisler, P., 1974, Acta Crystallogr., Sect. B: Struct. Sci., 30 (11), 2739–2741.

[27] Maverick, E., Seiler, P., Schweizer, W.B., and Dunitz, J.D., 1980, Acta Crystallogr., Sect. B: Struct. Sci., 36 (3), 615–620.

[28] Hehre, W. J., 2003, A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA.

[29] Arnaud-Neu, F., Delgado, R., and Chaves, S., 2003, Pure Appl. Chem., 75 (1), 71–102.

[30] Markova, N.V., and Vasiliev, V.P., 1995, J. Therm. Anal., 45 (4), 695–701.

[31] Wang, P., Izatt, R.M., Gillespie, S.E., Oscarson, J.L., Zhang, X.X., Wang, C., and Lamb, J.D., 1995, J. Chem. Soc., Faraday Trans., 91 (23), 4207–4213.



DOI: https://doi.org/10.22146/ijc.21259

Article Metrics

Abstract views : 2207 | views : 2330


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.