Direct Synthesis of Methanol by Partial Oxidation of Methane with Oxygen over Cobalt Modified Mesoporous H-ZSM-5 Catalyst

https://doi.org/10.22146/ijc.21194

Yuni Krisyuningsih Krisnandi(1*), Bayu Adi Samodro(2), Riwandi Sihombing(3), Russell Francis Howe(4)

(1) Department of Chemistry, FMIPA, Universitas Indonesia, Depok
(2) Department of Chemistry, FMIPA, Universitas Indonesia, Depok
(3) Department of Chemistry, FMIPA, Universitas Indonesia, Depok
(4) Department of Chemistry, University of Aberdeen, Aberdeen, Scotland
(*) Corresponding Author

Abstract


Partial oxidation of methane over mesoporous catalyst cobalt modified H-ZSM-5 has been carried out. Mesoporous Na-ZSM-5 (Si/Al = 35.4) was successfully synthesized using double template method which has high surface area (450 m2/g) and average pore diameter distribution of 1.9 nm. The as-synthesized Na-ZSM-5 was converted to H-ZSM-5 through multi-exchange treatment with ammonium ion solution, causing decreased crystallinity and surface area, but increased porous diameter, due to dealumination during treatment process. Moreover, H-ZSM-5 was loaded with cobalt (Co = 2.5% w) by the incipient impregnation method and calcined at 550 °C. Partial oxidation of methane was performed in the batch reactor with 0.75 bar methane and 2 bar of nitrogen (with impurities of 0.5% oxygen) as the input at various reaction time (30, 60 and 120 min). The reaction results show that cobalt species in catalyst has an important role, because H-ZSM-5 cannot produce methanol in partial oxidation of methane. The presence of molecular oxygen increased the percentage of methanol yield. The reaction is time-dependent with the highest methanol yield (79%) was acquired using Co/H-ZSM-5 catalyst for 60 min.

Keywords


methanol; methane; partial oxidation; H-ZSM-5; cobalt

Full Text:

Full Text Pdf


References

[1] EPA, 2010, U.S. Environmental Protection Agency, Washington, DC, USA.

[2] Khirsariya, P., and Mewada, M.K., 2013, Procedia Eng., 51, 409–415.

[3] Starokon, E.V., Parfenov, M.V., Arzumanov, S.S., Pirutko, L.V., Stepanov, A.G., and Panov, G.I., 2013, J. Catal., 300, 47–54.

[4] Hu, Y., Anpo, M., and Wei, C., 2013, J. Photochem. Photobiol., A, 264, 48–55.

[5] Zhang, Q., He, D., and Zhu, Q., 2008, J. Nat. Gas Chem., 17 (1), 24–28.

[6] Chen, L., Zhang, X., Huang, L., and Lei, L., 2010, J. Nat. Gas Chem., 19 (6), 628–637.

[7] Ono, T., Kudo, H., and Anpo, M., 2000, Appl. Catal., A, 194-195, 71–78.

[8] Michalkiewicz, B., 2004, Appl. Catal., A, 277 (1-2), 147–153.

[9] Beznis, N.V., van Laak, A.N.C., Weckhuysen, B.M., and Bitter, J.H., 2011, Microporous Mesoporous Mater., 138 (1-3), 176–183.

[10] Beznis, N.V., Weckhuysen, B.M., and Bitter, J.H., 2010, Catal. Lett., 136 (1), 52–56.

[11] Krisnandi, Y.K., Putra, B.A.P., Bahtiar, M., Zahara, Abdullah, I., and Howe, R.F., 2015, Procedia Chem., 14, 508–515.

[12] Christensen, C.H., Johannsen, K., Schmidt, I., and Christensen, C.H., 2003, J. Am. Chem. Soc., 125 (44), 13370–13371.

[13] Zhao, L., Shen, B., Gao, J., and Xu, C., 2008, J. Catal., 258 (1), 228–234.

[14] Li, X., Prins, R., and van Bokhoven, J.A., 2009, J. Catal., 262 (2), 257–265.

[15] Wang, L., Zhang, Z., Yin, C., Shan, Z., and Xiao, F-S., 2010, Microporous Mesoporous Mater., 131 (1-3), 58–67.

[16] Yoo, W.C., Zhang, X., Tsapatsis, M., and Stein, A., 2012, Microporous Mesoporous Mater., 149 (1), 147–157.

[17] van Koningsveld, H., Jansen, J.C., and van Bekkum, H., 1990, Zeolites, 10 (4), 235–242.

[18] Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L.C., Llewellyn, P., Maurin, G., Lewis, D.W., Binions, R., Autie, M., and Ruiz-Salvador, A.R., 2010, Microporous Mesoporous Mater., 135 (1-3), 187–196.

[19] Zhang, Y., Bai, G., Yan, X., Li, Y., Zeng, T., Wang, J., Wang, H., Xing, J., Luan, D., Tang, X., and Chen, L., 2009, Catal. Commun., 8 (7), 1102–1106.

[20] Hofmann, J.P., Mores, D., Aramburo, L.R., Teketel, S., Rohnke, M., Janek, J., Olsbye, U., and Weckhuysen, B.M., 2013, Chem. Eur. J., 19 (26), 8533–8542.

[21] Zhang, C., Liu, Q., Xu, Z., and Wan, K., 2003, Microporous Mesoporous Mater., 62 (3), 157–163.

[22] Wang, M., Liao, L., Zhang, X., Li, Z., Xia, Z., and Cao, W., 2009, Clays Clay Miner., 59 (5), 459–465.

[23] Amin, N.A.S., and Anggoro, D.D., 2003, J. Nat. Gas Chem., 12 (2), 123–134.

[24] McMurry, J.E., 2011, Organic Chemistry, Kentucky: Cengage Learning.

[25] Fellah, M.F., and Onal, I., 2010, J. Phys. Chem., 114, 3042–3051.



DOI: https://doi.org/10.22146/ijc.21194

Article Metrics

Abstract views : 2945 | views : 2280


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.