Effect of fluidised bed drying on ginsenoside content in hairy root cultures of Panax ginseng C.A. Meyer
James Setiabudi(1), Komang Mega Oka Sri Bintang(2), Stella Stacia Gani(3), Pissa Christanti(4), Evanie Noer Putri(5), Se Chan Kang(6), Johan Sukweenadhi(7*)
(1) Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Kalirungkut, Surabaya 60293, Jawa Timur, Indonesia
(2) Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Kalirungkut, Surabaya 60293, Jawa Timur, Indonesia
(3) Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Kalirungkut, Surabaya 60293, Jawa Timur, Indonesia
(4) PT. Bintang Toedjoe, Pulomas, Jakarta 13210, Indonesia
(5) PT. Bintang Toedjoe, Pulomas, Jakarta 13210, Indonesia
(6) Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
(7) Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Kalirungkut, Surabaya 60293, Jawa Timur, Indonesia
(*) Corresponding Author
Abstract
Korean Ginseng (Panax ginseng C.A. Meyer) is a high‐value herb with many pharmacological benefits due to its primary active compound, ginsenosides. The most ginsenosides are known to be thermolabile and susceptible to degradation at high‐temperature processing. Our previous studies revealed that the optimum parameters related to the P. ginseng tissue culture protocol, particularly for hairy root propagation of Cultured Roots of Mountain Ginseng (CRMG)‐88, was using a lab‐scale bioreactor. The next stage involves screening for a suitable post‐harvest treatment, i.e., drying, will be production of the best quality ginsenoside content. This study therefore aimed to examine the ginsenoside content by using a fluidised bed dryer (FBD) on the ginseng roots. Our results showed that FBD produced a significantly higher of total ginsenoside content (5.386 ± 1.167%), compared to control (3.750 ± 0.641%). FBD‐dried CRMG‐88 also appeared lighter in colour and more voluminous with a Loss on Drying (LOD) of 6.448 ± 1.900%. This study concluded that fluidised bed drying is superior in retaining ginsenoside content and has the potential for large‐scale application.
Keywords
Full Text:
PDFReferences
An KS, Choi YO, Lee SM, Ryu HY, Kang SJ, Yeon Y, Kim YR, Lee JG, Kim CJ, Lee YJ, Kang BJ, Choi JE, Song KS. 2019. Ginsenosides Rg5 and Rk1 enriched cultured wild ginseng root extract bioconversion of Pediococcus pentosaceus HLJG0702: Effect on scopolamine-induced memory dysfunction in mice. Nutrients 11(5):1–15. doi:10.3390/nu11051120.
Baeg Ih. 2022. The global ginseng market and Korean ginseng. J. Ginseng Res. 4:1–12. doi:10.23076/jgc.2022.4.001.
Chandra SP, Vianney YM, Christie TL, Wongso M, Widjaja M, Yang DC, Kang SC, Atoum MFM, Sukweenadhi J. 2021. Mass production of Panax ginseng C.A. Mey. root cultures in Indonesia. Sarhad J. Agric. 37(1):98–109.
Chen W, Balan P, Popovich DG. 2019. Analysis of ginsenoside content (Panax ginseng) from different regions. Molecules 24(19):1–11. doi:10.3390/molecules24193491.
Dannis Yuda Kusuma ANK, Anjar Tri Wibowo YS Boon Chin Tan, Manuhara W. 2023. Optimization of biomass and secondary metabolite production in Gynura procumbens (Lour.) Merr. adventitious roots culture by using the method of subculture and fedbatch cultivation in a bioreactor. HAYATI J. Biosci. 30(5):797–807. doi:10.4308/hjb.30.5.797-807.
Doymaz I, Ismail O. 2010. Drying and rehydration behaviors of green bell peppers. Food Sci. Biotechnol. 19(6):1449–1455. doi:10.1007/s10068-010-0207-7.
Hu J, Jiao J, Wang Y, Gao M, Lu Z, Yang F, Hu C, Song Z, Chen Y, Wang Z. 2019. Effect of extract from ginseng rust rot on the inhibition of human hepatocellular carcinoma cells in vitro. Micron 124(April):102710. doi:10.1016/j.micron.2019.102710.
Huang SF, Shen YC, Ou CH, Tang IC, Yang HW, Kao YT, Chang WL, Chang TC. 2023. Astragalus membranaceus and Panax notoginseng saponins improves intestinal L-arginine absorption and protects against intestinal disorder in vivo. Food Sci. Technol. Res. 29:129–140. doi:10.3136/fstr.FSTR-D-22-00116.
Jang GY, Kim MY, Lee YJ, Li M, Shin YS, Lee J, Jeong HS. 2018. Influence of organic acids and heat treatment on ginsenoside conversion. J. Ginseng Res. 42(4):532–539. doi:10.1016/j.jgr.2017.07.008.
Jang GY, Lee YJ, Li M, Kim MY, Lee SH, Hwang IG, Lee J, Jeong HS. 2017. Changes in ginsenoside compositions by high temperature processing under various soaking conditions. Food Sci. Technol. Res. 23(5):689–696. doi:10.3136/fstr.23.689.
Kamel SM, Thabet Ha, Algadi Ea, Sciences N, Science F, Arabia S. 2013. Influence of drying process on the functional properties of some plants. Chem. Mater. Res. 3(7):1–9.
Kim CJ, Kim BM, Kim CS, Baek JY, Jung IC. 2020. Variations in ginsenosides of raw ginseng according to heating temperature and time. J. Pharmacopunct. 23(2):79–87. doi:10.3831/KPI.2020.23.012.
Kim JH, Yi YS, Kim MY, Cho JY. 2017. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 41(4):435–443. doi:10.1016/j.jgr.2016.08.004.
Koh E, Jang OH, Hwang KH, An YN, Moon B. 2015. Effects of steaming and air-drying on ginsenoside composition of Korean ginseng (Panax ginseng C.A. Meyer). J. Food Process, Preserv. 39(2):207–213. doi:10.1111/jfpp.12412.
Kumar Y KM. 2015. Application of RSM in fluidized bed drying of beetroot (Beta vulgaris L.). Int. J. Res Stud. Biosci. 1(1):1–5. Lee D, Lee J, Kim KT, Kim S, Lee S. 2019. Analysis of major ginsenosides in various ginseng samples. J. Appl. Biol. Chem. 62(1):87–91. doi:10.3839/jabc.2019.013.
Mediani A, Abas F, Tan CP, Khatib A. 2014. Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 3(2):358–370. doi:10.3390/antiox3020358.
Motevali A, Chayjan R, Salari K, Taghizadeh Alisaraei A. 2016. Studying the effect of different drying bed on drying characteristic of mint leaves. Chem. Prod. Process Model. 11(3):231–239. doi:10.1515/cppm-2015- 0045.
Nazghelichi T, Kianmehr MH, Aghbashlo M. 2010. Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy 35(12):4679–4684. doi:10.1016/j.energy.2010.09.036.
Shin IS, Kim DH, Jang EY, Kim HY, Yoo HS. 2019. Anti-fatigue properties of cultivated wild ginseng distilled extract and its active component panaxydol in rats. J. Pharmacopunct. 22(2):68–74. doi:10.3831/KPI.2019.22.008.
St-Laurent T, Hammami R. 2022. The untapped potential of ginsenosides and American ginseng berry in promoting mental health via the gut–brain axis. Nutrients 14(12). doi:10.3390/nu14122523.
Vol JGR, Baeg Ih, So Sh. 2013. The world ginseng market and the ginseng (Korea). J. Ginseng Res. 37(1):1–7. doi:10.5142/jgr.2013.37.1.
Yao F, Li X, Sun J, Cao X, Liu M, Li Y, Liu Y. 2021. Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Sci. Rep. 11(1):1– 11. doi:10.1038/s41598-021-81079-w.
Zhang T, Han M, Yang L, Han Z, Cheng L, Sun Z, Yang L. 2019a. The effects of environmental factors on ginsenoside biosynthetic enzyme gene expression and saponin abundance. Molecules 24(1). doi:10.3390/molecules24010014.
Zhang Y, Qiu Z, Qiu Y, Su T, Qu P, Jia A. 2019b. Functional regulation of ginsenosides on myeloid immunosuppressive cells in the tumor microenvironment. Integr. Cancer Ther. 18. doi:10.1177/1534735419886655.
Zhang Y, Zhang Z, Wang H, Cai N, Zhou S, Zhao Y, Chen X, Zheng S, Si Q, Zhang W. 2016. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and antiapoptotic effects mediated by the PI3K/AKT/GSK- 3β pathway. Mol. Med. Rep. 14(3):2778–2784. doi:10.3892/mmr.2016.5556.
Zheng MM, Xu FX, Li YJ, Xi XZ, Cui XW, Han CC, Zhang XL. 2017. Study on transformation of ginsenosides in different methods. BioMed Res. Int. 2017. doi:10.1155/2017/8601027.
DOI: https://doi.org/10.22146/ijbiotech.79677
Article Metrics
Abstract views : 1061 | views : 923Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.