Evaluation of the patchouli essential oil (Pogostemon cablin Benth.) aromatic characteristic by near‐infrared spectroscopy

https://doi.org/10.22146/ijbiotech.69073

Diego Mauricio Cano-Reinoso(1), Yohanes Aris Purwanto(2*), I Wayan Budiastra(3), Shinichiro Kuroki(4), Sutrisno Sutrisno(5), Slamet Widodo(6)

(1) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(2) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(3) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(4) Graduate School of Agricultural Science, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, 657‐8501, Kobe, Japan
(5) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(6) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(*) Corresponding Author

Abstract


This study aimed to evaluate the aromatic characteristic of patchouli essential oil (Pogostemon cablin Benth.) by near‐infrared spectroscopy combined with chemometric treatments. The study used 84 oil samples collected from around Indonesia, namely in Konawe, Kolaka, Bogor, Garut, Aceh, Jambi, and Masamba. Several pretreatments were used to process the spectral data, together with the application of partial least squares. The spectrum wavelength applied was between 1000 and 2500 nm. The spectra data were separated to develop two models based on their physical and chemical properties (Bogor, Garut, Konawe, and Kolaka in the first model; Aceh, Jambi, and Masamba in the second one). Liquid chromatography‐mass spectrometry (LC‐MS) was used as a reference method. Patchouli alcohol was established as the main chemical compound of this aromatic oil. The best calibration for the first model was that with mean center normalization as a data pretreatment, while for the second model, it was the one using the second derivative. Both models had a correlation coefficient higher than 0.90 and a coefficient of variation lower than 2.98%. In conclusion, near‐infrared spectroscopy can be employed as an accurate tool to determine the characteristic of patchouli oil.

Keywords


Non‐destructive; Patchouli alcohol; PCA; PLS; Quality

Full Text:

PDF


References

Burns DA, Ciurczak EW. 2002. Handbook of Near­Infrared Analysis. USA: CRC Press. doi:10.1201/9781003042204.

Cano­Reinoso DM. 2018. Evaluation of the quality of patchouli aromatic oil (Pogostemon cablin Benth.) by near­infrared spectroscopy. Ph.D. thesis, IPB University, Bogor.

Cano­Reinoso DM, Purwanto YA, Budiastra IW, Sutrisno, Kuroki S, Widodo S, Kamanga BM. 2021. Determination of α­guaiene and azulene chemical content in patchouli aromatic oil (Pogostemon cablin benth.) from indonesia by near­infrared spectroscopy. Indian J. Nat. Prod. Resour. 12(2):256–262. doi:10.56042/ijnpr.v12i2.24657.

Cayuela JA, García JF. 2017. Sorting olive oil based on alpha­tocopherol and total tocopherol content using near­infra­red spectroscopy (NIRS) analysis. J. Food Eng. 202:79–88. doi:10.1016/j.jfoodeng.2017.01.015.

Cortés V, Blasco J, Aleixos N, Cubero S, Talens P. 2019. Monitoring strategies for quality control of agricultural products using visible and near­infrared spectroscopy: A review. Trends Food Sci. Technol. 85(October 2018):138–148. doi:10.1016/j.tifs.2019.01.015.

Cseháti T, Forgács E, Deyl Z, Miksik I. 2005. Chromatography in authenticity and traceability tests of vegetable oils and dairy products: A review. Biomed. Chromatogr. 19(3):183–190. doi:10.1002/bmc.486.

Daferera DJ, Tarantilis PA, Polissiou MG. 2002. Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 50(20):5503–5507. doi:10.1021/jf0203489.

Dantas TN, Cabral TJ, Dantas Neto AA, Moura MC. 2020. Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models. J. Ind. Eng. Chem. 81:219–227. doi:10.1016/j.jiec.2019.09.011.

Diego MC, Purwanto YA, Sutrisno S, Budiastra IW. 2018. Determination of the Characteristics and Classification of Near­Infrared Spectra of Patchouli Oil (PogostemoncCablin Benth.) from Different Origin. IOP Conf. Ser. Earth Environ. Sci. 147(1):012013. doi:10.1088/1755­1315/147/1/012013.

Dũng NX, Leclercq PA, Thai TH, Moi LD. 1989. Chemical composition of patchouli oil from vietnam. J. Essent. Oil Res. 1(2):99–100. doi:10.1080/10412905.1989.9697758.

Dupuy N, Gaydou V, Kister J. 2014. Quantitative Analysis of Lavender (<i>Lavandula angustifolia</i>) Essential Oil Using Multiblock Data from Infrared Spectroscopy. Am. J. Anal. Chem. 05(10):633–645. doi:10.4236/ajac.2014.510071.

García Martín JF. 2022. Potential of Near­Infrared Spectroscopy for the Determination of Olive Oil Quality. Sensors 22(8):2831. doi:10.3390/s22082831.

Gokulakrishnan J, Kuppusamy E, Shanmugam D, Appavu A, Kaliyamoorthi K. 2013. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pacific J. Trop. Dis. 3(1):26– 31. doi:10.1016/S2222­1808(13)60006­7.

Hasegawa Y, Tajima K, Toi N, Sugimura Y. 1992. An additional constituent occurring in the oil from a patchouli cultivar. Flavour Fragr. J. 7(6):333–335. doi:10.1002/ffj.2730070608.

Hu LF, Li SP, Cao H, Liu JJ, Gao JL, Yang FQ, Wang YT. 2006. GC­MS fingerprint of Pogostemon cablin in China. J. Pharm. Biomed. Anal. 42(2):200–206. doi:10.1016/j.jpba.2005.09.015.

Kuriakose S, Joe IH. 2013. Feasibility of using near infrared spectroscopy to detect and quantify an adulterant in high quality sandalwood oil. Spectrochim. Acta ­ Part A Mol. Biomol. Spectrosc. 115:568–573. doi:10.1016/j.saa.2013.06.076.

Lafhal S, Vanloot P, Bombarda I, Kister J, Dupuy N. 2016. Chemometric analysis of French lavender and lavandin essential oils by near infrared spectroscopy. Ind. Crops Prod. 80:156–164. doi:10.1016/j.indcrop.2015.11.017.

Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaï B. 2000. Light penetration properties of NIR radiation in fruit with respect to non­destructive quality assessment. Postharvest Biol. Technol. 18(2):121–132. doi:10.1016/S0925­5214(99)00071­X.

Lebot V, Champagne A, Malapa R, Shiley D. 2009. NIR determination of major constituents in tropical root and tuber crop flours. J. Agric. Food Chem. 57(22):10539–10547. doi:10.1021/jf902675n.

Lee MS, Hwang YS, Lee J, Choung MG. 2014. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near­infrared reflectance spectroscopy. Food Chem. 158:351–357. doi:10.1016/j.foodchem.2014.02.127.

Murugan R, Mallavarapu GR. 2013. α­Bisabolol, the main constituent of the essential oil of Pogostemon speciosus. Ind. Crops Prod. 49:237–239. doi:10.1016/j.indcrop.2013.04.047.

Nikolić M, Jovanović KK, Marković T, Marković D, Gligorijević N, Radulović S, Soković M. 2014. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind. Crops Prod. 61:225–232. doi:10.1016/j.indcrop.2014.07.011.

Ozaki Y. 2012. Near­infrared spectroscopy­its versatility in analytical chemistry. Anal. Sci. 28(6):545–562. doi:10.2116/analsci.28.545.

Ozaki Y, Fred McClure W, Christy A. 2013. Near­infrared spectroscopy in food science and technology. New Jersey, USA: John Wiley & Sons, Inc., 1th ed edition.

Ramya HG, Palanimuthu V, Rachna S. 2013. An introduction to patchouli (Pogostemon cablin Benth.) ­ A medicinal and aromatic plant: It’s importance to mankind. Agric. Eng. Int. CIGR J. 15(2):243–250.

Sandes SS, Zucchi MI, Pinheiro JB, Bajay MM, Batista CE, Brito FA, Arrigoni­Blank MF, Alvares­Carvalho SV, Silva­Mann R, Blank AF. 2016. Molecular characterization of patchouli (Pogostemon spp.) germplasm. Genet. Mol. Res. 15(1):1–12. doi:10.4238/gmr.15017458.

Silva­Filho SE, Wiirzler LAM, Cavalcante HAO, Uchida NS, de Souza Silva­Comar FM, Cardia GFE, da Silva EL, Aguiar RP, Bersani­Amado CA, Cuman RKN. 2016. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed. Pharmacother. 84:1697–1704. doi:10.1016/j.biopha.2016.10.084.

Wang L, Sun DW, Pu H, Cheng JH. 2017. Quality analysis, classification, and authentication of liquid foods by near­infrared spectroscopy: A review of recent research developments. Critical Reviews in Food Science and Nutrition 57(7):1524–1538. doi:10.1080/10408398.2015.1115954.

Widoretno W. 2016. In vitro induction and characterization of tetraploid Patchouli (Pogostemon cablin Benth.) plant. Plant Cell. Tissue Organ Cult. 125(2):261–267. doi:10.1007/s11240­016­0946­0.

Williams P. 2001. Pionera e innovadora. Minnesota, USA: American Association of Cereal Chemists. Inc., 2th ed edition. Wu Y, Li C, Li X, Yuan M, Hu X. 2013. Comparison of the Essential Oil Compositions between Pogostemon cablin and Agatache rugosa Used as Herbs. J. Essent. Oil­Bearing Plants 16(6):705–713. doi:10.1080/0972060X.2013.862077.

Yahya A, Yunus RM. 2013. Influence of sample preparation and extraction time on chemical composition of steam distillation derived patchouli oil. In: Procedia Eng., volume 53. p. 1–6. doi:10.1016/j.proeng.2013.02.001.



DOI: https://doi.org/10.22146/ijbiotech.69073

Article Metrics

Abstract views : 2270 | views : 2352

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.