Spatial analysis of toxoplasmosis through EcoHealth approaches using GRA-1 recombinant: case in Sleman, Yogyakarta

https://doi.org/10.22146/ijbiotech.50750

Fihiruddin Fihiruddin(1), Wayan Tunas Artama(2*), Barandi Sapta Widartono(3)

(1) Department of Medical Laboratory Technology, Politeknik Kesehatan Mataram, Praburangkasari Street, Sandubaya, Mataram 83232
(2) One Health/EcoHealth Resource Center, Universitas Gadjah Mada, Barek, Teknika Utara Street, Kocoran, Sleman, Yogyakarta 55281; Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Fauna Street No. 2, Caturtunggal, Sleman, Yogyakarta 55281
(3) Department of Medical Laboratory Technology, Politeknik Kesehatan Mataram, Praburangkasari Street, Sandubaya, Mataram 83232; Departement of GISRP, Faculty of Geography, Universitas Gadjah Mada, Kaliurang Street, Sinduadi, Sleman, Yogyakarta 55281
(*) Corresponding Author

Abstract


Toxoplasmosis is an obligate intracellular zoonotic parasite caused by Toxoplasma gondii that can infect all warm-blooded animals including humans. Prevalence of toxoplasmosis varies depending on climate, geography, and the presence of cats in an area. This study aimed to identify the prevalence and distribution of toxoplasmosis in Sleman, Yogyakarta through EcoHealth approaches. A total of  385 blood samples were collected from residents in the district of Sleman. Seven people from 55 villages were selected for blood sampling using a cluster method. The collected serums were tested by ELISA using recombinant Granule 1 protein (GRA-1) as  coated antigen. Data on altitude and coordinates of sampling sites were collected using GPS.  instruments, soil surface temperature in Sleman was obtained by satellite imagery, and cat population in residential areas was determined by questionnaire. The prevalence of toxoplasmosis in Sleman was 58%, of which distributed around rivers and in cattle pens. Based on altitude and temperature, toxoplasmosis cases were found the highest at 0-150 m (66.3%) and at temperatures of 26-30°C (66.4%). Areas with large numbers of cats had toxoplasmosis prevalence of 75.8% while areas with moderate and few cats were 56.5% and 49.0%, respectively. Thus, differences in the prevalence of toxoplasmosis at settlement were found based on altitude, soil surface temperature, and cat populations.


Keywords


EcoHealth; GPS; GRA-1; toxoplasmosis

Full Text:

PDF


References

Afonso E, Thulliez P, Gilot­Fromont E. 2010. Lo­ cal meteorological conditions, dynamics of seroconversion to Toxoplasma gondii in cats (Fe­lis catus) and oocyst burden in a rural envi­ronment. Epidemiol Infect. 138(8):1105–1113. doi:10.1017/S0950268809991270.

Agustin PD, Mukono J. 2016. Description Between Cats Exposure with Toxoplasmosis Disease on Cats Owner and Not­ Cats Owner in Mulyorejo Subdis­trict, Surabaya City. Jurnal Kesehatan Lingkungan 8(1):103. doi:10.20473/jkl.v8i1.2015.103­117.

Al­Kappany YM, Rajendran C, Ferreira LR, Kwok OC, Abu­Elwafa SA, Hilali M, Dubey JP. 2010. High prevalence of toxoplasmosis in cats from Egypt: Iso­lation of viable Toxoplasma gondii, tissue distribution, and isolate designation. J Parasitol. 96(6):1115– 1118. doi:10.1645/GE­2554.1.

Aubert D, Villena I. 2009. Detection of Toxoplasma gondii oocysts in water: Proposition of a strat­egy and evaluation in Champagne­Ardenne region, France. Mem Inst Oswaldo Cruz. 104(2):290–295. doi:10.1590/S0074­02762009000200023.

Caballero­Ortega H, Palma JM, García­Márquez LJ, Gildo­Cárdenas A, Correa D. 2008. Fre­ quency and risk factors for toxoplasmosis in ovines of various regions of the State of Col­ ima, Mexico. Parasitology 135(12):1385–1389. doi:10.1017/S0031182008004873.

Chacin­Bonilla L, Sanchez­Chavez Y, Monsalve F, Estevez J. 2001. Seroepidemiology of Toxoplasmosis in Amerindians from Western Venezuela. Am J Trop Med Hyg. 65(2):131–135. doi:10.4269/ajtmh.2001.65.131.

Chahaya I. 2003. Toxoplasma gondii Epidemiology of Toxoplasma gondii. Jurnal Kesehatan p. 1–13.

Chivian E. 2001. Environment and health: 7. Species loss and ecosystem disruption ­ The implications for hu­man health. CMAJ 164(1):66–69.

De Camps S, Dubey JP, Saville WJ. 2008. Seroepidemiol­ogy of Toxoplasma gondii in zoo animals in selected zoos in the midwestern United States. J Parasitol. 94(3):648–653. doi:10.1645/GE­1453R.1.

Döşkaya M, Caner A, Can H, Iz SG, Gedik Y, Döşkaya AD, Kalantari­Dehaghi M, Gürüz Y. 2014. Diagnostic value of a Rec­ELISA Using Toxo­plasma gondii recombinant SporoSAG, BAG1, and GRA1 proteins in murine models infected orally with tissue cysts and oocysts. PLoS ONE 9(9). doi:10.1371/journal.pone.0108329.

Dong H, Su R, Lu Y, Wang M, Liu J, Jian F, Yang Y. 2018. Prevalence, risk factors, and genotypes of Toxoplasma gondii in food animals and humans (2000­2017) from China. Front Microbiol. 9:1–10. doi:10.3389/fmicb.2018.02108.

Dubey JP. 1998. Toxoplasma gondii oocyst survival un­ der defined temperatures. J Parasitol. 84(4):862–865. doi:10.2307/3284606.

Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP. 2010. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Para­sitol. 26(4):190–196. doi:10.1016/j.pt.2010.01.009.

Fromont EG, Riche B, Rabilloud M. 2009. Toxoplasma seroprevalence in a rural population in France: Detec­tion of a household effect. BMC Infect Dis. 9(76):1–7. doi:10.1186/1471­2334­9­76.

Iskandar T. 2008. Toxoplasmosis of Goat and Sheep in Java. Wartazoa 18(3):157–166. doi:10.14334/wartazoa.v18i3.900.

Jones JL, Kruszon­Moran D, Wilson M, McQuillan G, Navin T, McAuley JB. 2001. Toxoplasma gondii infection in the United States: Seroprevalence and risk factor. Am J Epidemiol. 154(4):357–365. doi:10.1093/aje/154.4.357.

Lopes AP, Sargo R, Rodrigues M, Cardoso L. 2011. High seroprevalence of antibodies to Toxoplasma gondii in wild animals from Portugal. Parasitol Res. 108(5):1163–1169. doi:10.1007/s00436­010­2158­6.

Meerburg BG, Kijlstra A. 2009. Changing climate­ changing pathogens: Toxoplasma gondii in North­ Western Europe. Parasitol Res. 105(1):17–24. doi:10.1007/s00436­009­1447­4.

Meireles LR, Galisteo AJ, Pompeu E, Andrade HF. 2004. Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free­living cats and dogs. Trop Med Int Health. 9(8):876–881. doi:10.1111/j.1365­3156.2004.01280.x.

Muflikhah ND, Artama WT. 2017. An evaluation study of enzyme­linked immunosorbent assay (ELISA) us­ ing recombinant protein Gra1 for detection of IgG an­tibodies against Toxoplasma gondii infections. Indonesian Journal of Tropical and Infectious Disease 6(5):105. doi:10.20473/ijtid.v6i5.5903.

Rapport DJ. 2007. Sustainability science: An eco­ health perspective. Sustain Sci. 2(1):77–84. doi:10.1007/s11625­006­0016­3.

Retmanasari A, Widartono BS, Wijayanti MA, Artama WT. 2017. Prevalence and Risk Factors for Toxoplasmosis in Middle Java, Indonesia. EcoHealth 14(1):162–170. doi:10.1007/s10393­016­1198­5.

Sadiqui S, Shah SRH, Almugadam BS, Shakeela Q, Ahmad S. 2019. Distribution of Toxoplasma gondii IgM and IgG antibody seroposi­tivity among age groups and gestational periods in pregnant women. F1000Research 7:1823. doi:10.12688/f1000research.15344.3.

Salman D, Pumidonming W, Oohashi E, Igarashi M. 2018. Prevalence of Toxoplasma gondii and other intestinal parasites in cats in tokachi sub­prefecture, Japan. J Vet Medi Sci. 80(6):960–967. doi:10.1292/jvms.17­ 0713.

Sasmita R. 2006. Toxoplasmosis causes miscarriages and baby abnormalities. Surabaya: Airlangga University Press.

Sroka J, Karamon J, Dutkiewicz J, Fatla AW, Za­ja̧c V, Cencek T. 2018. Prevalence of Toxo­plasma gondii infection in cats in southwestern­ Poland. Ann Agric Environ Med. 25(3):576–580. doi:10.26444/aaem/94675.

Subedi S, Sharma B, Singh S, Bindari YR. 2018. Sero­prevalence of Toxoplasma gondii in sheep in different geographical regions of Nepal. Vet Anim Sci. 5:7–9. doi:10.1016/j.vas.2018.01.001.

Subekti DT. 2014. Study of Antigenicity and Im­munogenicity Gra1 Protein from Toxoplasma gondii. Indones Bull Anim Vet. 23(3):103–114. doi:10.14334/wartazoa.v23i3.1001.

Subekti DT, Arrasyid NK. 2006. Immunopathogenesis of Toxoplasma gondii according to different strains. Wartazoa 16(3):128–145.

Subekti DT, Artama WT, Sulistyaningsih E, Poerwanto SH, Sari Y, Bagaskoro F. 2008. Cloning and Clone analysis of GRA1 gene from local isolate Toxoplasma gondii tachyzoite. JITV 13(1):43–51.

Subrata IM, Suryadhi NT, Mantik­Astawa N, Damriyasa IM. 2015. Epidemiological and Molecular Analysis of Toxoplasma gondii in Faecal Samples of Cats Ob­tained From House of Maternal in Bali. Bali Med J 4(2):68. doi:10.15562/bmj.v4i2.122.

Sujono. 2010. Serological prevalence of toxoplasmosis and risk factor at privilege province of Yogyakarta with ELISA method using Gra1 tachyzoite recom­binant proteins of local isolate. Master thesis, Yogyakarta, Gadjah Mada University.

Sukthana Y. 2006. Toxoplasmosis: beyond animals to hu­ man. Trends Parasitol. 22:137–142.

Tenter AM. 2009. Toxoplasma gondii in animals used for human consumption. Mem Inst Os­ waldo Cruz. 104(2):364–369. doi:10.1590/S0074­ 02762009000200033.

Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxo­plasma gondii: From animals to humans. Int J Parasitol. 30(12­13):1217–1258. doi:10.1016/S0020­7519(00)00124­7.

Utami WS. 2009. Isolation, characterization and diagnos­ tic test of recombinant GRA­1 takizoit of Toxoplasma gondii local isolates. Master thesis, Yogyakarta, Gad­ jah Mada University.

Wihadmadyatami H, Widayanti R, Artama WT. 2011. Isolation and identification expression of Granule­1 (GRA1) recombinant protein Toxoplasma gondii lo­ cal isolate. J Sain Vet 29(2):102–109.



DOI: https://doi.org/10.22146/ijbiotech.50750

Article Metrics

Abstract views : 2685 | views : 2378

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.