Data mining analysis of miR-638 and key genes interaction in cisplatin resistant triple-negative breast cancer

https://doi.org/10.22146/ijbiotech.48732

Adam Hermawan(1*), Herwandhani Putri(2)

(1) Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta 55281
(2) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta 55281
(*) Corresponding Author

Abstract


Cisplatn is one of the chemotherapy for the treatment of triple‐negatve breast cancer (TNBC), but its effectveness is limited because of the phenomenon of chemoresistance. miR‐638 was shown to regulate chemoresistance; however, it has never been validated in the cisplatn‐resistant tumor from patents. This present study aimed to identfy the key gene regulatory networks of miR‐638 and evaluate the potental role of the miR‐638 and its targets as potental prognosis biomarkers for cisplatn‐resistance triple‐negatve breast cancer patents. The miR‐638 target was obtained from the miRecords database while the mRNA of chemoresistance biomarker candidate was obtained from the GSE18864 of GEO database, which is mRNA of cisplatn‐resistance TNBC patents. CCND1 and FZD7 are potental candidates for cisplatn chemoresistance biomarkers in patents with TNBC. Moreover, a Kaplan‐Meier survival plot showed that breast cancer patents with low mRNA levels of FZD7 had signifcantly worse overall survival than those in higher mRNA expression group. Taken together, miR‐638 plays a role in cisplatn resistance mechanism through a mechanism involving its target gene CCND1 and FZD7. Overall, miR‐638, CCND1, and FZD7 are candidates for cisplatn biomarker resistance in TNBC.


Keywords


miR-638; chemoresistance; triple-negative breast cancer; data mining

Full Text:

PDF


References

Agarwal V, Bell GW, Nam JW, Bartel DP. 2015. Predict­ ing effective microRNA target sites in mammalian mRNAs. eLife 4. doi:10.7554/eLife.05005.

Baykara O, Dalay N, Bakir B, Bulut P, Kaynak K, Buyru N. 2017. The EMSY gene collaborates with CCND1 in non­small cell lung carcinogenesis. Int J Med Sci 14(7):675–679. doi:10.7150/ijms.19355.

Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kot­tek T, Schauer M, Franz S, Saalbach A, Anderegg U, Wolkenhauer O, Schadendorf D, Simon JC, Magin T, Vera J, Kunz M. 2015. miR­638 promotes melanoma metastasis and protects melanoma cells from apop­tosis and autophagy. Oncotarget 6(5):2966–2980. doi:10.18632/oncotarget.3070.

Burandt E, Grünert M, Lebeau A, Choschzick M, Quaas A, Jänicke F, Müller V, Scholz U, Bokemeyer C, Petersen C, et al. 2016. Cyclin D1 gene amplification is highly homogeneous in breast cancer. Breast Cancer 23(1):111–119. doi:10.1007/s12282­014­0538­y.

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Ak­ soy BA, Jacobsen A, Byrne CJ, Heuer ML, Lars­ son E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional can­cer genomics data. Cancer Discovery 2(5):401–404. doi:10.1158/2159­8290.cd­12­0095.

Chen Z, Duan X. 2018. hsa_circ_0000177­miR­638­ FZD7­Wnt signaling cascade contributes to the ma­lignant behaviors in glioma. DNA and Cell Biol 37(9):791–797. doi:10.1089/dna.2018.4294.

Dai J, Wei RJ, Li R, Feng JB, Yu YL, Liu PS. 2016. A study of CCND1 with epithelial ovarian cancer cell proliferation and apoptosis. Eur Rev Med Pharmacol Sci 20(20):4230–4235.

Fuste NP, Castelblanco E, Felip I, Santacana M, Fernandez­Hernandez R, Gatius S, Pedraza N, Pal­ lares J, Cemeli T, Valls J, et al. 2016. Characteriza­tion of cytoplasmic cyclin D1 as a marker of inva­siveness in cancer. Oncotarget 7(19):26979–26991. doi:10.18632/oncotarget.8876.

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. 2013. Integrative analysis of complex cancer ge­nomics and clinical profiles using the cBioPortal. Sci Signaling 6(269):pl1. doi:10.1126/scisignal.2004088.

Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Das­ tur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, et al. 2012. Systematic identification of ge­ nomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575. doi:10.1038/nature11005.

Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. 2010. An online survival anal­ysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725– 731. doi:10.1007/s10549­009­0674­9.

Gyorffy B, Surowiak P, Kiesslich O, Denkert C, Schafer R, Dietel M, Lage H. 2006. Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer 118(7):1699–1712. doi:10.1002/ijc.21570.

He M, Lin Y, Tang Y, Liu Y, Zhou W, Li C, Sun G, Guo M. 2016. miR­638 suppresses DNA dam­ age repair by targeting SMC1A expression in ter­minally differentiated cells. Aging 8(7):1442–1456. doi:10.18632/aging.100998.

Hu P, Guan K, Feng Y, Ma C, Song H, Li Y, Xia X, Li J, Li F. 2017. miR­638 Inhibits immature Ser­ toli cell growth by indirectly inactivating PI3K/AKT pathway via SPAG1 gene. Cell Cycle 16(23):2290– 2300. doi:10.1080/15384101.2017.1380130.

Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, Wang BY, Teng YE, Tong ZS, Pan YY, et al. 2015. Cis­ platin plus gemcitabine versus paclitaxel plus gem­citabine as first­line therapy for metastatic triple­ negative breast cancer (CBCSG006): a randomised, open­label, multicentre, phase 3 trial. Lancet Oncol 16(4):436–446. doi:10.1016/s1470­2045(15)70064­1.

Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. 2019. Chemoresistance mechanisms of breast can­cer and their countermeasures. Biomed Pharmacother 114:108800. doi:10.1016/j.biopha.2019.108800.

Jia XP, Meng LL, Fang JC, Wang HW, Chen J, Zhou J, Wang CN, Jiang WF. 2018. Aberrant expression of miR­142­3p and its target gene HMGA1 and FZD7 in breast cancer and its clinical significance. Clin Lab 64(6):915–921. doi:10.7754/Clin.Lab.2017.171114.

Kilker RL, Hartl MW, Rutherford TM, Planas­Silva MD. 2004. Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen­resistant breast cancer cells. J Steroid Biochem Mol Biol 92(1­2):63–71. doi:10.1016/j.jsbmb.2004.05.005.

Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, Crosetto N, Foukakis T, Navin NE. 2018. Chemoresistance evolution in triple­negative breast cancer de­ lineated by single­cell sequencing. Cell 173(4):879– 893.e13. doi:10.1016/j.cell.2018.03.041.

King TD, Suto MJ, Li Y. 2012. The Wnt/beta­catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113(1):13–18. doi:10.1002/jcb.23350.

Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW, Liu RS. 2017. STAT3/NF­kappaB­regulated lentiviral TK/GCV suicide gene therapy for cisplatin­resistant triple­negative breast cancer. Theranostics 7(3):647– 663. doi:10.7150/thno.16827.

Lee JK, Havaleshko DM, Cho HJ, Weinstein JN, Kald­jian EP, Karpovich J, Grimshaw A, Theodorescu D. 2007. A strategy for predicting the chemosensitiv­ity of human cancers and its application to drug discovery. Proc Natl Acad Sci 104(32):13086–13091. doi:10.1073/pnas.0610292104.

Lefebvre C, Bachelot T, Filleron T, Pedrero M, Cam­ pone M, Soria JC, Massard C, Levy C, Arne­ dos M, Lacroix­Triki M, et al. 2016. Muta­tional profile of metastatic breast cancers: a ret­rospective analysis. PLoS Med 13(12):e1002201. doi:10.1371/journal.pmed.1002201.

Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, et al. 2011. Aberrant expression of miR­638 contributes to benzo(a)pyrene­induced human cell transformation. Toxicol Sci 125(2):382–391. doi:10.1093/toxsci/kfr299.

Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. 2015. miR­638 regulates differentiation and proliferation in leukemic cells by targeting cyclin­ dependent kinase 2. J Biol Chem 290(3):1818–1828. doi:10.1074/jbc.M114.599191.

Long J, Ou C, Xia H, Zhu Y, Liu D. 2015. MiR­503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumor Biol 36(11):8697–8702. doi:10.1007/s13277­015­3623­8.

Maia LBL, Breginski FSC, Cavalcanti TCS, de Souza RLR, Roxo VMS, Ribeiro EMSF. 2016. No differ­ence in CCND1 gene expression between breast can­cer patients with and without lymph node metasta­ sis in a Southern Brazilian sample. Clin Exp Med 16(4):593–598. doi:10.1007/s10238­015­0392­z.

Oliveros JC. 2007. Venny. An interactive tool for comparing lists with Venn’s diagrams URL http://bioinfogp.cnb.csic.es/tools/ venny/index.html.

Orso F, Quirico L, Dettori D, Coppo R, Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E, Taverna D. 2019. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol doi:10.1016/j.semcancer.2019.07.024.

Pandika M. 2018. Mining Gene Expression Data for Drug Discovery. ACS Cent Sci 4(8):944–947. doi:10.1021/acscentsci.8b00529.

Ramos­Garcia P, Gil­Montoya JA, Scully C, Ayen A, Gonzalez­Ruiz L, Navarro­Trivino FJ, Gonzalez­ Moles MA. 2017. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis 23(7):897– 912. doi:10.1111/odi.12620.

Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M. 2017. MiRNA­638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett 390:126–136. doi:10.1016/j.canlet.2017.01.009.

Rhodes DR, Yu J, Shanker K, Deshpande N, Varam­ bally R, Ghosh D, Barrette T, Pandey A, Chin­naiyan AM. 2004. ONCOMINE: a cancer microarray database and integrated data­mining platform. Neo­plasia 6(1):1–6. doi:10.1016/S1476­5586(04)80047­2.

Seiler R, Thalmann GN, Rotzer D, Perren A, Fleischmann A. 2014. CCND1/CyclinD1 status in metastasiz­ ing bladder cancer: a prognosticator and predictor of chemotherapeutic response. Mod Pathol 27(1):87–95. doi:10.1038/modpathol.2013.125.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interac­tion networks. Genome Res 13(11):2498–504. doi:10.1101/gr.1239303.

Shen Y, Chen H, Gao L, Zhang W, He J, Yang X, Qin L, Xue X, Guo Z. 2017. MiR­638 acts as a tumor suppressor gene in gastric cancer. Oncotarget 8(64):108170–108180. doi:10.18632/oncotarget.22567.

Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, et al. 2010. Efficacy of neoadjuvant Cisplatin in triple­ negative breast cancer. J Clin Oncol 28(7):1145–53. doi:10.1200/jco.2009.22.4725.

Soleimani Z, Kheirkhah D, Sharif MR, Sharif A, Karim­ian M, Aftabi Y. 2017. Association of CCND1 gene c.870G>A polymorphism with breast cancer risk: a case­control study and a meta­analysis. Pathol Oncol Res 23(3):621–631. doi:10.1007/s12253­016­0165­3.

Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, Teal CB, Man YG, Brem RF, Fu SW. 2014. miR­638 mediated regulation of BRCA1 affects DNA re­ pair and sensitivity to UV and cisplatin in triple­ negative breast cancer. Breast Cancer Res 16(5):435. doi:10.1186/s13058­014­0435­5.

Ullah Shah A, Mahjabeen I, Kayani MA. 2015. Genetic polymorphisms in cell cycle regulatory genes CCND1 and CDK4 are associated with susceptibility to breast cancer. J Buon 20(4):985–993.

Wang F, Lou JF, Cao Y, Shi XH, Wang P, Xu J, Xie EF, Xu T, Sun RH, Rao JY, Huang PW, Pan SY, Wang H. 2015. miR­638 is a new biomarker for out­ come prediction of non­small cell lung cancer patients receiving chemotherapy. Exp Mol Med 47:e162. doi:10.1038/emm.2015.17.

Wang Y, Ren F, Li B, Song Z, Chen P, Ouyang L. 2019. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. J Cancer 10(15):3303–3314. doi:10.7150/jca.29738.

Wei H, Zhang JJ, Tang QL. 2017. MiR­638 inhibits cervical cancer metastasis through Wnt/beta­ catenin signaling pathway and correlates with prognosis of cervical cancer patients. Eur Rev Med Pharmacol Sci 21(24):5587–5593. doi:10.26355/eurrev_201712_13999.

Wei L, Wang X, Lv L, Zheng Y, Zhang N, Yang M. 2019. The emerging role of noncoding RNAs in colorectal cancer chemoresistance. Cell Oncol (Dordr) pages 1– 12. doi:10.1007/s13402­019­00466­8.

Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. 2009. miRecords: an integrated resource for microRNA­target interactions. Nucleic Acids Res 37(suppl_1):D105–D110. doi:10.1093/nar/gkn851.

Xie W, Zhang Y, He Y, Zhang K, Wan G, Huang Y, Zhou

Z, Huang G, Wang J. 2018. A novel recombinant human Frizzled­7 protein exhibits anti­tumor activ­ ity against triple negative breast cancer via abating Wnt/beta­catenin pathway. Int J Biochem Cell Biol 103:45–55. doi:10.1016/j.biocel.2018.08.004.

Xu J, Lin DI. 2018. Oncogenic c­terminal cy­ clin D1 (CCND1) mutations are enriched in endometrioid endometrial adenocarci­ nomas. PLoS One 13(7):e0199688 1–14.

doi:10.1371/journal.pone.0199688.

Xu J, Wan X, Chen X, Fang Y, Cheng X, Xie X, Lu W. 2016. miR­2861 acts as a tumor suppressor via target­ ing EGFR/AKT2/CCND1 pathway in cervical cancer

induced by human papillomavirus virus 16 E6. Sci Rep 6(1):28968 1–14. doi:10.1038/srep28968.

Xue M, Shen J, Cui J, Wu J, Qiao W, Ding N, Song C, Shan B. 2019. MicroRNA­638 expres­ sion change in osteosarcoma patients via PLD1 and VEGF expression. Exp Ther Med 17(5):3899–3906. doi:10.3892/etm.2019.7429.

Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CC, Lau S, et al. 2011. FZD7 has a critical role in cell proliferation in triple neg­ative breast cancer. Oncogene 30(43):4437–4446. doi:10.1038/onc.2011.145.

Yang Z, Feng Z, Gu JH, Li XH, Dong QZ, Liu KR, Li Y, OuYang L. 2017. microRNA­488 inhibits chemoresistance of ovarian cancer cells by targeting Six1 and mitochondrial function. Oncotarget 8(46):80981– 80993. doi:10.18632/oncotarget.20941.

Zarei N, Fazeli M, Mohammadi M, Nejatollahi F. 2018. Cell growth inhibition and apoptosis in breast can­cer cells induced by anti­FZD7 scFvs: involve­ment of bioinformatics­based design of novel epi­ topes. Breast Cancer Res Treat 169(3):427–436. doi:10.1007/s10549­017­4641­6.

Zhao B, Erwin A, Xue B. 2018. How many differentially expressed genes: A perspective from the compari­ son of genotypic and phenotypic distances. Genomics 110(1):67–73. doi:10.1016/j.ygeno.2017.08.007.

Zheng DH, Wang X, Lu LN, Chen DL, Chen JM, Lin FM, Xu XB. 2018. MiR­638 serves as a tumor suppressor by targeting HOXA9 in glioma. Eur Rev Med Pharmacol Sci 22(22):7798–7806. doi:10.26355/eurrev_201811_16404.



DOI: https://doi.org/10.22146/ijbiotech.48732

Article Metrics

Abstract views : 3660 | views : 3074

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.