IMPROVING PHYSICO-CHEMICAL CHARACTERISTIC AND PALATABILITY OF KING GRASS (Pennisetum hybrid) SILAGE BY INOCULATION OF Lactobacillus plantarum - Saccharomyces cerevisiae CONSORTIA AND ADDITION OF RICE BRAN
Ahmad Sofyan(1*), Yantyati Widyastuti(2), Ristianto Utomo(3), Lies Mira Yusiati(4)
(1) Doctoral Program of Advanced Agricultural Technology and Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan. & Researcher at Division of Feed and Animal Nutrition,Research Unit for Natural Product Technology (BPTBA),Indonesian Institute of Sciences (LIPI)
(2) Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, 16911
(3) Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta, 55281
(4) Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta, 55281
(*) Corresponding Author
Abstract
This study was conducted to determine effectiveness of inoculants consisted of lactic acid bacteria Lactobacillus plantarum (Lp) and yeast Saccharomyces cerevisiae (Sc) combined with addition of rice bran on the physico-chemical characteristics and palatability of king grass (Pennisetum hybrid) silage. The experiment was arranged on the factorial randomized design (3x3) consisting of the inoculants treatments (control, Lp, Lp+Sc) and the addition level of rice bran (0, 5 and 10%). The measured variables were physico-chemical characteristics i.e. colour, odour, pH, lactic acid, Fleigh points, and palatability of silage. Inoculation of Lp and Lp+Sc improved silage odour and reduced fungal contamination. Silage was treated by Lp+Sc and rice bran (5-10%) showed reduction of pH and an increase of lactic acid and Fleigh points. However, interaction between inoculants and rice bran treatment was not significance. Either inoculation or addition of rice bran tended to enhance the palatability of silage in cattle. It concluded that the addition of inoculants L. plantarum and S. cerevisiae with/without addition of 5-10% rice bran could improve the physico-chemical characteristics of silage and its palatability to ruminant.
Keywords
Full Text:
PDFReferences
Amer, S., F. Hassanat, R. Berthiaume, P. Seguin, and A.F. Mustafa. 2012. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Anim. Feed Sci. Technol. 177: 23-29.
AOAC. 2005. Official Method of Analysis. In: Helrich, K. (ed.) 15th Edition, Association of Official Analytical Chemists (AOAC). Arlington, V.A.
Baumont R. 1996. Palatability and feeding behaviour in ruminants. A review. Ann. Zootech 45: 385-400.
Budiman, H., and S. Djamal. 1994. Hijauan Pakan Ternak. Pusat Perpustakaan Pertanian dan Komunikasi Penelitian, Badan Penelitian dan Pengembangan Pertanian, Bogor.
Carrau, F.M., K. Medina, L. Farina, E. Boido, P.A. Henschke, and E. Dellacassa. 2008. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 8: 1196-1207.
Chaucheyras‐Durand, F., A. Ameilbonne, A. Bichat, P. Mosoni, F. Ossa, and E. Forano. 2016. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microbiol. 120: 560-570.
Duniere, L., L. Jin, B. Smiley, M. Qi, W. Rutherford, Y. Wang, and T. McAllister. 2015. Impact of adding strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage. J. Anim. Sci. 93: 2322-2335.
Gobbetti, M. 1998. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9: 267-274.
Gollop, N., V. Zakin, and Z.G. Weinberg. 2005. Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants. J. Appl. Microbiol. 98: 662-666.
Gomez, K.A., dan A.A. Gomez. 2007. Prosedur Statistik untuk Penelitian Pertanian. Edisi Kedua. Terjemahan: E. Sjamsuddin dan J.S. Baharsjah. Penerbit Universitas Indonesia (UI-Press), Jakarta.
Grovum, W.L. 1988. Appetite, palatability and control of feed intake. In: D.C. Church (Ed). The Ruminant Animal Digestive Physiology and Nutrition. A Reston Book Prentice Hall, Englewood Cliffs, New Jersey. pp. 202-216.
Hutton, G. 2008. Evaluating Silage Quality. http://www1.agric.gov.ab.ca/ $department/deptdocs.nsf/all/for4909 [Accessed on 06/03/2011].
International Committee for Animal Recording [ICAR]. 2010. Forage and Grasses. http://www.icar.org.in/files/forage-and-grasses.pdf. [Accessed on 01/02/2011].
Kiliç, A. 1984. Silo yemi (Silage Feed). Bilgehan Press, Izmir,
Turkey. pp. 350.
Mathews, M.C. 1999. Bad Smelling Silage. University of California Cooperative Extension. http://cestanislaus.ucanr.edu/files/111040.htm. [Accessed on 15 September 2016].
McDonald, P., A.R. Henderson, and S.J.E. Heron. 1991. The Biochemistry of silage. Second Edition. Chalcombe Publications, Marlow, UK.
Lalou, S., F. Mantzouridou, A. Paraskevopoulou, B. Bugarski, S. Levic, and V. Nedovic. 2013. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Appl. Microbial. Biotechnol. 97: 9397-9407.
Ouellet, D.R., and J. Chiquette. 2016. Effect of dietary metabolizable protein level and live yeasts on ruminal fermentation and nitrogen utilization in lactating dairy cows on a high red clover silage diet: yeast and metabolizable protein supply for cows. Anim. Feed Sci. Technol.. DOI: 10.1016/j.anifeedsci.2016.07.006
Ozturk, D., Kizilsimsek, M., Kamalak, A., Canbolat, O., and Ozkan, C.O. 2006. Effects of ensiling alfalfa with whole-crop maize on the chemical composition and nutritive value of silage mixtures. Asian Australas. J. Anim. Sci. 19: 526-532.
Riyanti, L., Suryahadi, and D. Evvyernie. 2016. In vitro fermentation characteristics and rumen microbial population of diet supplemented with Saccharomyces cerevisiae and rumen microbe probiotics. Med. Pet. 39: 40-45.
Scharenberg, A., Y. Arrigo, A. Gutzwiller, C.R. Soliva, U. Wyss, M. Kreuzer, and F. Dohme. 2007. Palatability in sheep and in vitro nutritional value of dried and ensiled sainfoin (Onobrychis viciifolia) birdsfoot trefoil (Lotus corniculatus), and chicory (Cichorium intybus). Arch. Anim. Nutr. 61: 481-496.
Santos, E.M., T.C. Silva, C.H.O. Macedo, and F.S. Campos. 2013. Lactic acid bacteria in tropical grass silages. In: Lactic Acid Bacteria-R & D for Food, Health and Livestock Purposes. M. Kongo (Ed.). InTech Publisher, Croatia. pp. 335–362. http://www.doi.org/10.5772/2825
Santoso, B., B.T. Hariadi, H. Manik, dan H. Abubakar. 2009. Kualitas rumput unggul tropika hasil ensilase dengan bakteri asam laktat dari ekstrak rumput terfermentasi. Med. Pet. 32 (2): 137-144.
Sofyan, A., H. Herdian, A. Febrisiantosa, and H. Julendra. 2007. The palatability of complete feed silage treated by semi-aerobic inoculants. Proceeding of National Seminar “Asosiasi Ahli Nutrisi dan Pakan Indonesia (AINI) VI”. Faculty of Animal Sciences, UGM-Yogyakarta, 26-27 July 2007. p. 416-421.
Sofyan, A., L.M. Yusiati, Y. Widyastuti, and R. Utomo. 2011a. Microbiological characteristic and fermentability of king grass (Pennisetum hybrid) silage treated by lactic acid bacteria yeast inoculants consortium combined with rice bran addition. J. Indones. Trop. Anim. Agric. 36: 265-272.
Sofyan, A., R. Utomo, L.M. Yusiati, and Y. Widyastuti. 2011b. Isolation and identification of lactic acid bacteria and Saccharomyces cerevisiae from natural sources as feed-silage inoculants. Proceeding of the 3rd International Conference of Indonesian Society for Lactic Acid Bacteria. Yogyakarta, 21-22 January 2011. p. 89-96.
Stefanie, J.W.H., O. Elferink, F. Driehuis, J.C. Gottschal, and S.F. Spoelstra. 2000. Silage Fermentation and Their Manipulation. In: L.‘t Mannetje (ed.) Proc. of the FAO Electronic Conference on Tropical Silage. September 1- December 15. p. 17-30.
Strauss, C.J., J.L.F. Kock, P.W.J. van Wyk, E.J. Lodolo, C.H. Pohl, and P.J. Botes. 2005. Bioactive oxylipins in Saccharomyces cerevisiae. J. Inst. Brew. 111 (3): 304–308.
Thuault, D., E. Beliard, J.L. Guern, and C.M. Bourgeois. 1991. Inhibition of Clostridium tyrobutyricum by bacteriocin-like substances produced by lactic acid bacteria. J. Dairy Sci. 74: 1145-1150.
Tabacco, E., F. Righi, A. Quarantelli, and G. Borreani. 2011. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 94: 1409-1419.
Vissers, M.M.M., F. Driehuis, M.C. TeGiffel, P. De Jong, and J.M.G. Lankveld. 2007. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration. J. Dairy Sci. 90:928-936.
Valan-Arasu, M., M.W. Jung, S. Ilavenil, M. Jane, D.H. Kim, K.D. Lee, H.S. Park, T.Y. Hur, G.J. Choi, Y.C. Lim, N.A. Al‐Dhabi, and K.C. Choi. 2013. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC‐10 from forage silage with potential beneficial properties. J. Appl. Microbiol. 115: 1172-1185.
Weinberg, Z.G., and Muck, R.E. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev.19: 53-68.
Zakariah, M.A., R. Utomo, and Z. Bachruddin. 2016. The effect of Lactobacillus plantarum and Saccharomyces cerevisiae culture addition prior to ensilage on in vitro fermentation and digestibility of cocoa pod silage. Bull. Anim. Sci. 40: 124-132.
Zhang, J.G., Y. Cai, R. Kobayashi, and S. Kumai. 2000. Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J. Sci. Food Agric. 80:1455-1460.
DOI: https://doi.org/10.21059/buletinpeternak.v41i1.12980
Article Metrics
Abstract views : 3190 | views : 3164Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.