Information System for Prevention of National Healthcare Insurance Fraud Among Inpatients of Advanced Referral Health Services

https://doi.org/10.22146/ahj.v1i1.33624

Budi Santoso(1*), Yulita Hendrartini(2), Bambang Udji Djoko Rianto(3), Laksono Trisnantoro(4)

(1) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(2) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(3) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(4) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Background: The National Health Insurance (JKN) was started from January 1st, 2014, however every year there was a deficit between the income of the Social Security Administrator Healthcare (BPJS Kesehatan) and the money paid to healthcare facilities. One of the causes was the potential for JKN fraud in inpatient services at advanced referral health facilities (FKRTL). As a response, the Ministry of Health, the Corruption Eradication Commission (KPK) and other JKN stakeholders currently are developing a JKN fraud prevention, early detection, investigation and action system.

Objective: This research aimed to analyze the implementation of the new information system for potential JKN fraud prevention and detection in inpatient services for JKN participants in RSUP Dr. Soeradji Tirtonegoro as an example of FKRTL.

Design: This study used cross-sectional methods in assessing JKN fraud in single episodes of patient care by using JKN fraud indicators in the information system. We identified potential JKN fraud during April-July 2017 from JKN claim data. Reliability of information system was assessed by HOT-Fit research questionnaire (Human Organization Technology and Benefit) and Stata® software.

Results: The data shown there was a significant decrease in potential JKN fraud conducted by FKRTL between April-July 2017: in April 14 findings, May 8 findings, June 1 findings, and July there were no findings. Prevention and early detection of potential JKN fraud among hospitalized JKN participants were conducted effectively by using an information system that contains indicators of JKN fraud. Reliability analysis of information system on the patient administration officers (TURP), BPJS Kesehatan officers and hospital internal verification officers resulted in alpha Cronbach value of > 0.8.

Conclusions: The results show that the information system is reliable to prevent and early detect potential JKN fraud in inpatient services for JKN participants in FKRTL. Information system is effective and reliable for prevention and early detection potential National Health Insurance fraud in service of inpatient advanced referral health services.


Keywords


information system, fraud prevention, National Healthcare Insurance.



References

Cahyono AE. Setahun Berlaku BPJS Kesehatan Rugi. Teropong senayan 2015 Feb 8. Retrieved from http://www.teropongsenayan.com/6446-setahun-berlaku-bpjs-kesehatan-rugi. 2. Kemenkes RI. Buku pegangan sosialisasi Jaminan Kesehatan Nasional (JKN) dalam Sistem Jaminan Sosial Nasional: 2013. Retrieved from http://www.depkes.go.id/resources/download/jkn/ buku-pegangan-sosialisasi-jkn.pdf 3. Tariden T. BPJS Dibobol, KPK Temukan Indikasi 1 Juta Klaim Fiktif. medan.tribunnews.com 2017 March 30. Retrieved from http://medan.tribunnews.com/2017/03/30/bpjs-dibobol-kpk-temukan-indikasi-1-juta-klaim-fiktif 4. Ariati N. Pencegahan Korupsi dalam Sistem Jaminan Sosial Nasional. In: Simposium fraud dalam Jaminan Kesehatan nasional; 2015 Oct .Retrieved from http://djsn.go.id/storage/app/uploads/public/58c/280/8be/58c2808be3b5e830093909.pdf 5. Hendrartini Y. Deteksi dan Investigasi Fraud dalam Asuransi Kesehatan: Bagaimana di Indonesia? Universitas Gadjah Mada Universary symposium; 2014 Dec:6-9. 6. Honer PM. Combating white-collar crime in US healthcare programs [Dissertation]. Business InformationTechnology Faculty of Electrical Engineering, Math and Comp Sci, 2015. Retrieved from http://essay.utwente.nl/69016/1/Hoener_MA_EEMCS.pdf 7. Sutoto. Peran direktur rumah sakit dalam mencegah fraud di rumah sakit. Jakarta, 2015. Retrieved from http://manajemenrumahsakit.net/wp-content/uploads/2014/03/PERAN-DIREKTUR-RUMAH-SAKIT-DALAM-MENCEGAH-FRAUD-DR-SUTOTO.pdf 8. Trisnantoro L, Rahma PA, Jasri H. Sistem Pencegahan, Deteksi, dan Penindakan Fraud Layanan Kesehatan dalam Era Jaminan Kesehatan Nasional (JKN), 2014. Retrieved from https://www.mutupelayanankesehatan.net/14-agenda/1716-policy-brief-sistem-pencegahan-deteksi-dan-penindakan-fraud-layanan-kesehatan-dalam-era-jaminan-kesehatan-nasional-jkn 9. Busch RS. Introduction to healthcare fraud. In: Heathcare fraud, Auditing and detection guide. New Jersey:Willey, 2012:1-17. 10. Kemenkes RI. Pencegahan Kecurangan (Fraud) Dalam Pelaksanaan Program Jaminan Kesehatan Pada Sistem Jaminan Sosial Nasional. 2015. 11. Jasri H. Blended Learning Optimalisasi Peran Tim Pencegahan Kecurangan JKN di Rumah Sakit. Mutu Pelayanan Kesehatan, Yogyakarta, 2016. Retrieved from https://www.mutupelayanankesehatan.net/41-cop-fraud/2434-bimbingan-teknis-tim-pencegahan-kecurangan-jkn-di-rumah-sakit. 12. Fadjriadinur. Peran BPJS Kesehatan Dalam Pencegahan Fraud Dan Abuse Dalam Sistem Jaminan Kesehatan Nasional. Jakarta, 2015. Retrieved from http://diskes.jabarprov.go.id/dmdocuments/9b1cfb6797c4408531082425ae3c60c6.pdf 13. Suparman. Cegah penyimpangan kpk dan kemkes bentuk satgas jkn. Retrieved from http://www.beritasatu.com/hukum/415855-cegah-penyimpangan-kpk-dan-kemkes-bentuk-satgas-jkn.html 14. Murti B. Validitas dan reliabilitas pengukuran matrikulasi program studi doktoral, Fakultas Kedokteran UNS, 2011. Retrieved from https://www.slideshare.net/TeeNage27/validitas-reliabilitas-pengukuran-prof-bhisma-murti 15. Yusof MM, Kuljis J, Papazafeiropoulou A, et al. An evaluation framework for health information systems: human, organization and technology-fit factors (HOT-fit). Int J Med Inf 2008;77(6):386-398. Retrieved from https://healthit.ahrq.gov/health-it-tools-and-resources/workflow-assessment-health-it-toolkit/research/yusof-mm-et-al-2008. 16. Cresswell JW. A Framework for design, In: Research design, Qualitative, Quantitative and Mixed Methods Approaches, California: Sage Publication, 2010:3-26. 17. Reyna. Getting Started in Data Analysis using Stata (v. 6.0). Princetown University, 2007. Retrieved from http://dss.princeton.edu/training. 18. Wiliam R. Measurement Error 2: Scale Construction (Very Brief Overview). University of Notre Dame. https://www3.nd.edu/~rwilliam/stats2/l23.pdf 19. Tavakol M, Dennick, R. Making sense of Cronbach’s alpha. Int J of Med Edu, 2, 2011, pp.53-55. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205511 20. Instalasi Penyelesaian Piutang Pasien (IP3) RSUP dr Soeradji Tirtonegoro. Laporan gagal klaim dan pending klaim Jaminan Kesehtan Nasional April-Juli 2017. 21. Kuncahyo WS. Sudah Saatnya Kartu BPJS Diganti Sistem Finger Print. 2016 July 27. Retrieved from http://kesehatan.rmol.co/read/2016/07/27/254724/Sudah-Saatnya-Kartu-BPJS-Diganti-Sistem-Finger-Print- 22. Tonang. RS dan fraud dalam JKN: profesional, moral dan maslahat. Simposium Persatuan Rumah Sakit Seluruh Indonesia, 2015:5. Retrieved from http://www.apci.or.id/download/rsdanjkndalamfraud.pdf 23. Barnett. Patient Characteristics and differences in hospital readmission rates. Jamainternmed, 2015. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991542/ 24. Jenks SF, William MV, Coleman MA. Rehospitalizations among Patients in the Medicare Fee-for-Service Program. N Engl J Med 2009;360:1418-28. Retrieved from http://www.nejm.org/doi/full/10.1056/NEJMsa0803563#t=article 25. Toomey SL, Peltz A, Loren S, Tracy M, Williams K, Pengeroth L, et al. Potentially Preventable 30-Day Hospital Readmissions at a Children’s Hospital. Pediatr. 2016 August ;138(2) 26. Duprey ME, Nelson A, Lynch SN, Granger BB, Xu H, Willis JM, et al. Identifying Nonclinical Factors Associated With 30-Day Readmission in Patients with Cardiovascular Disease: Protocol for an Observational Study. JMIR Res Protoc. 2017 Jun; 6(6): e118 27. Barret ML, Wie LM, Jiang HK. All-Cause Readmissions by Payer and Age, 2009–2013. Retrieved from https://www.hcup-us.ahrq.gov/reports/statbriefs/sb199-Readmissions-Payer-Age.jsp 28. Hubbard. Improving medication adherence and reducing readmission. A NEHI issue brief, October 2012. Retrieved from https://www.nacds.org/pdfs/pr/2012/nehi-readmissions.pdf. 29. BPJS Kesehatan. Info BPJS Kesehatan edisi XIII tahun 2014. Retrieved from http://bpjs-kesehatan.go.id/Bpjs/dmdocuments/1d3b0c3210d00cb6af835b0f8f34a8da.pdf 30. Mardha B. 10 Tindakan Fraud dalam Pelayanan Kesehatan di Era JKN –BPJS. Kesehatanpro, 2014 December 31.Retrieved from http://www.kesehatanpro.com/10-tindakan-fraud-dalam-pelayanan-kesehatan-di-era-jkn-bpjs/ 31. Dodaro GL. Government efficiency and effectiveness opportunities to reduce fragmentation, overlap, duplication, and improper payments and achieve other financial benefits. United States, 2015. Retrieved from http://www.gao.gov/assets/690/684643.pdf 32. Thorpe N, Deslich S, Sikula A, Coustasse A. Combating medicare fraud: a Struggling w ork in progress. South Charleston, 2012. Retrieved from http://mds.marshall.edu/cgi/viewcontent.cgi?article=1044&context=mgmt_faculty 33. Hartati. Pencegahan kecurangan (fraud) dalam pelaksanaan program jaminan kesehatan pada sistem jaminan sosial kesehatan (SJSN)di rumah sakit umum daerah Menggala Tulang Bawang. Faculty of Law, Lampung University, Bandarlampung, Lampung, Indonesia Volume 10 Issues 4: October-Desember 2016. Retrieved from http://jurnal.fh.unila.ac.id/index.php/fiat/article/download/808/701. 34. Suparman F. KPK Ungkap Persoalan Tata Kelola Obat dalam JKN. October 20 2016. http://www.beritasatu.com/nasional/393839-kpk-ungkap-persoalan-tata-kelola-obat- dalam-jkn.html3.



DOI: https://doi.org/10.22146/ahj.v1i1.33624

Article Metrics

Abstract views : 2650

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Academic Hospital Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Currently, Academic Hospital Journal indexed by:

google-scholar

garuda

dimensions logo


 

Web
    Analytics

View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License