Optimization of Lithium Separation from NCA Leachate Solution: Investigating the Impact of Feed Concentration, Pressure, and Complexing Agent Concentration

https://doi.org/10.22146/ajche.83096

Pra Cipta Buana Wahyu Mustika(1), Edward Chandra Suryanaga(2), Indra Perdana(3), Sutijan Sutijan(4), Widi Astuti(5), Himawan Tri Bayu Murti Petrus(6), Agus Prasetya(7*)

(1) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(2) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(3) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(4) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(5) Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan, Lampung, 35361, Indonesia
(6) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(7) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281
(*) Corresponding Author

Abstract


Recycling lithium batteries (LIB) has emerged as an attractive solution in the global pursuit of environmentally friendly practices. The aim of achieving zero–waste hydrometallurgical technology is within reach. This research focuses on utilizing the low-pressure nanofiltration process to address this challenge by separating lithium ions from other ions and achieving a desirable permeate flux. The NCA battery leachate concentrate was obtained through a hydrometallurgical process involving sulfuric acid–peroxide. To ensure the prevention of potential nanofiltration membrane (TS80) fouling, the concentrate is initially filtered using an ultrafiltration membrane (UH004) to remove any particles. The research investigates the impact of pressure (4, 6, and 7 bar), solution concentration (concentrate, 10x, and 50x dilution), and the concentration of the complexing agent (EDTA) on the desired separation performance. The investigation reveals that pressure variations exhibit consistent rejection rates, remaining stable above 80%. A similar trend is observed with the addition of EDTA, which consistently yields rejection rates above 80%. However, when examining different feed concentrations, the rejection of lithium falls below 80% for leachate concentrates. In summary, satisfactory results are obtained by employing nanofiltration with a TS80 membrane at a pressure of 7 bar, a dilution factor of 10x, and using a 0.02M EDTA complexing agent. Meanwhile, it was found that the separation factors (Li⁺/Ni²⁺ = ~8.6, Li⁺/ Co²⁺ = ~7.3, Li⁺/Al³⁺ = ~4.9) and permeate flux ±46.58 L m⁻² h⁻¹. The findings demonstrate good selectivity along with relatively high flux.


Keywords


Battery Leachate, EDTA, Lithium Ion Battery (LIB), Lithium Separation, Nanofiltration, NCA Battery

Full Text:

PDF


References

Alkhadra, M.A., Conforti, K.M., Gao, T., Tian, H., and Bazant, M.Z., 2019. “Continuous Separation of Radionuclides from Contaminated Water by Shock Electrodialysis.” Environ. Sci. Technol. 54 (1), 527–536.

Aryani, W., Anggraini, A.G., Bahfie, F., Herlina, U., Al Muttaqii, M., and Prasetyo, E., 2021. “A Kinetic study of manganese leaching from low-grade psilomelane ore by acetic-tannic acid lixiviant.” ASEAN Journal of Chemical Engineering 21, 188–200.

Cerrillo-Gonzalez, M.M., Villen-Guzman, M., Vereda-Alonso, C., Gomez-Lahoz, C., Rodriguez-Maroto, J.M., and Paz-Garcia, J.M., 2020. “Recovery of Li and Co from LiCoO 2 via hydrometallurgical – electrodialytic treatment.” Applied Sciences 4, 2367.

Chan, K.H., Malik, M., and Azimi, G., 2022. “Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis.” Resour. Conserv. Recycl. 178, 106076.

Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., and Wang, Y., 2019. “Recycling end-of-life electric vehicle lithium-ion batteries.” Joule 3, 2622–2646.

Dimaculangan, D.A.A., Bungay, V.C., and Soriano, A.N., 2022. “Determination of diffusion coefficients of heavy metal ions electrolytic conductivity measurements.” ASEAN Journal of Chemical Engineering, 22, 58–71.

Gao, L., Wang, H., Zhang, Y., and Wang, M., 2020a. “Nanofiltration membrane characterization and application: Extracting lithium in lepidolite leaching solution.” Membranes 10, 1–18.

Gao, L., Wang, H., Zhao, Y., and Wang, M., 2020b. “The Application of nanofiltration for separating aluminium and lithium from lepidolite leaching solution.” Chemistry Select. 5, 4979–4987.

Gasparini, B., Lívia, A., Araújo, B., Vieira, C.C., Cristina, M., Amaral, S., and Conceição, H., 2019. “Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects.” Sep. Purif. Technol. 222, 369–380.

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., and Anderson, P., 2019. “Recycling lithium-ion batteries from electric vehicles.” Nature 575, 75–86.

Iizuka, A., Yamashita, Y., Nagasawa, H., Yamasaki, A., and Yanagisawa, Y., 2013. “Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation.” Sep. Purif. Technol. 113, 33–41.

Imbrogno, A., and Schäfer, A.I., 2019. “Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end).” J. Memb. Sci. 585, 67–80.

Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., and Dai, C., 2022. “A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances.” J. Clean. Prod. 340, 130535.

Jo, M., Ku, H., Park, S., Song, J., and Kwon, K., 2018. “Effects of residual lithium in the precursors of Li[Ni1/3Co1/3Mn1/3]O2 on their lithium-ion battery performance.” Journal of Physics and Chemistry of Solids 118, 47–52.

Kim, S., Bang, J., Yoo, J., Shin, Y., Bae, J., Jeong, J., Kim, K., Dong, P., and Kwon, K., 2021. “A comprehensive review on the pretreatment process in lithium-ion battery recycling.” J. Clean. Prod. 294, 126329.

Ku, H., Jung, Y., Jo, M., Park, S., Kim, S., Yang, D., Rhee, K., An, E.M., Sohn, J., and Kwon, K., 2016. “Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.” J. Hazard. Mater. 313, 138–146.

Kumar, J., Neiber, R.R., Park, J., Ali Soomro, R., Greene, G.W., Ali Mazari, S., Young Seo, H., Hong Lee, J., Shon, M., Wook Chang, D., and Yong Cho, K., 2022. “Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery.” Chemical Engineering Journal 431, 133993.

Kumar, R., Liu, C., Ha, G.S., Park, Y.K., Ali Khan, M., Jang, M., Kim, S.H., Amin, M.A., Gacem, A., and Jeon, B.H., 2022. “Downstream recovery of Li and value-added metals (Ni, Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system.” Chemical Engineering Journal 447, 137507.

Laurio, M.V.O., Yenkie, K.M., and Slater, C.S., 2022. “Optimization of vibratory nanofiltration for sustainable coffee extract concentration via response surface methodology.” Separation Science and Technology 57, 112–130.

Li, X., Mo, Y., Qing, W., Shao, S., Tang, C.Y., and Li, J., 2019. “Membrane-based technologies for lithium recovery from water lithium resources: A review.” J. Memb. Sci. 591, 117317.

Li, Z., He, G., Zhao, G., Niu, J., Li, L., Bi, J., Mu, H., Zhu, C., Chen, Z., Zhang, L., Zhang, H., Zhang, J., Wang, B., and Wang, Y., 2021. “Preparation of a novel ion-imprinted membrane using sodium periodate-oxidized polydopamine as the interface adhesion layer for the direction separation of Li+ from spent lithium-ion battery leaching solution.” Sep. Purif. Technol. 277, 119519.

Lobo, V.M.M., and Quaresma, J.L., 1990. “Diffusion coefficients in aqueous solutions of cadmium chloride at 298 K.” Electrochim. Acta. 35, 1433–1436.

López, J., Reig, M., Vecino, X., Gibert, O., and Cortina, J.L., 2020. “Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment.” Chemical Engineering Journal 382, 122786.

Micari, M., Diamantidou, D., Heijman, B., Moser, M., Haidari, A., Spanjers, H., and Bertsch, V., 2020. “Experimental and theoretical characterization of commercial nanofiltration membranes for the treatment of ion exchange spent regenerant.” J. Memb. Sci. 606, 118117.

Purnomo, C.W., Kesuma, E., Wirawan, S.K., and Hinode, H., 2017. “The development of lithium ion recovery method by activated carbon and natural zeolite-based adsorbent.” ASEAN Journal of Chemical Engineering 17, 91–98.

Purwanto, A., Yudha, C.S., Ikhwan Muhammad, K., Algifari, B.G., Widiyandari, H., and Sutopo, W., 2020. “Synthesis of LiNi0.8Co0.15Al0.05O2 cathode material via flame-assisted spray pyrolysis method.” Advanced Powder Technology 31, 1674–1681.

Ribeiro, A.C.F., Valente, A.J.M., Sobral, A.J.F.N., Lobo, V.M.M., Burrows, H.D., and Esteso, M.A., 2007. “Diffusion coefficients of aluminium chloride in aqueous solutions at 298.15, 303.15 and 315.15 K.” Electrochim. Acta. 52, 6450–6455.

Ricci, B.C., Ferreira, C.D., Aguiar, A.O., and Amaral, M.C.S., 2015. “Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent.” Sep. Purif. Technol. 154, 11–21.

Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., and Bauer, J., 2006. “Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes.” Sep. Purif. Technol. 51, 40–47.

Thompson, D.L., Hartley, J.M., Lambert, S.M., Shiref, M., Harper, G.D.J., Kendrick, E., Anderson, P., Ryder, K.S., Gaines, L., and Abbott, A.P., 2020. “The importance of design in lithium ion battery recycling-a critical review.” Green Chemistry 22, 7585–7603.

Tian, G., Yuan, G., Aleksandrov, A., Zhang, T., Li, Z., Fathollahi-Fard, A.M., and Ivanov, M., 2022. “Recycling of spent Lithium-ion Batteries: A comprehensive review for identification of main challenges and future research trends.” Sustainable Energy Technologies and Assessments 53, 102447.

Wadekar, S.S., and Vidic, R.D., 2017a. “Influence of active layer on separation potentials of nanofiltration membranes for inorganic ions.” Environ. Sci. Technol. 51, 5658–5665.

Wang, B., Liu, F., Zhang, F., Tan, M., Jiang, H., Liu, Y., and Zhang, Y., 2022. “Efficient separation and recovery of cobalt(II) and lithium(I) from spent lithium ion batteries (LIBs) by polymer inclusion membrane electrodialysis (PIMED).” Chemical Engineering Journal 430, 132924.

Wen, X., Ma, P., Zhu, C., He, Q., and Deng, X., 2006. “Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration.” Sep. Purif. Technol. 49, 230–236.

Yao, Y., Zhu, M., Zhao, Z., Tong, B., Fan, Y., and Hua, Z., 2018. “Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review.” ACS Sustain. Chem. Eng. 6, 13611–13627.

Yudha, C.S., Muzayanha, S.U., Widiyandari, H., Iskandar, F., Sutopo, W., and Purwanto, A., 2019. “Synthesis of LiNi0.85Co0.14Al0.01O2 cathode material and its performance in an NCA / graphite full-battery.” Energies, 12, 1886.

Zante, G., Boltoeva, M., Masmoudi, A., Barillon, R., and Trébouet, D., 2019. “Lithium extraction from complex aqueous solutions using supported ionic liquid membranes.” J. Memb. Sci. 580, 62–76.

Zhai, X., Wang, Y.L., Dai, R., Li, X., and Wang, Z., 2022. “Roles of anion-cation coupling transport and dehydration-induced ion-membrane interaction in precise separation of ions by nanofiltration membranes.” Environ. Sci. Technol. 56, 14069–14079.

Żyłła, R., Foszpańczyk, M., Kamińska, I., Kudzin, M., Balcerzak, J., and Ledakowicz, S., 2022. “Impact of polymer membrane properties on the removal of pharmaceuticals.” Membranes, 12(2), 150



DOI: https://doi.org/10.22146/ajche.83096

Article Metrics

Abstract views : 1447 | views : 885

Refbacks

  • There are currently no refbacks.


ugarena777