Nanotitania-Activated Carbon with Enhanced Photocatalytic Activity: A Comparison Between Suspended and Immobilized Catalyst for Turquoise Blue Removal
Jurex Gallo(1*), Josephine Borja(2), Susan Gallardo(3), Pailin Ngaotrakanwiwat(4), Cris Salim(5), Hirofumi Hinode(6)
(1) Department of Chemical Engineering, College of Engineering De La Salle University, Manila, 2401, Philipines
(2) Department of Chemical Engineering, College of Engineering De La Salle University, Manila, 2401, Philipines
(3) Department of Chemical Engineering, College of Engineering De La Salle University, Manila, 2401, Philipines
(4) Department of Chemical Engineering, Burapha University, Chonburi, Thailand
(5) Tokyo Institute Technology, Tokyo, Japan
(6) Tokyo Institute Technology, Tokyo, Japan
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
- Andronic, L. and Duta, A. (2008). “The Influence of TiO2 Powder and Film on the Photodegradation of Methyl Orange. Materials Chemistry and Physics 112, 1078-1082.
- Ao, Y, Xu, J., Fu, D., Shen, X. and Yuan, C. (2008), “Low Temperature Preparation of Anatase TiO2 -Activated Carbon Composite Film”, Applied Surface Science 254, 4001–4006.
- Baran, W., Makowski, A., and Wardas, W. (2008). The Effect of UV Radiation Absorption of Cationic and Anionic Dye Solutions on their Photocatalytic Degradation in the Presence of TiO2. Dyes and Pigments 76, 226 -230.
- Bandoz, T. (2006). Interface Science and Technology 7, Activated Carbon Surfaces in Environmental Remediation, Academic Press, 7-8.
- Behnajady, M., Modirshahla, N., Daneshvar, N. and Rabbani, M. (2007). Photocatalytic Degradation of C.I. Red by Immobilized ZnO on Glass Plates. Journal of Hazardous Materials 140, 257–263.
- Bu, S., Jin, Z., Liu, X., Yang, L. and Cheng, Z. (2005), “Synthesis of TiO2 Porous Thin Films by Polyethylene Glycol Templating and Chemistry of the Process”, Journal of the European Ceramic Society 25, 673–679.
- Carpio, E., Zuniga, P., Ponce, S., Solis, J., Rodriguez, J., and Estrada, W. (2005), “Photocatalytic Degradation of Phenol using TiO2 Nanocrystals Supported on Activated Carbon”, Journal of Molecular Catalysis A 228, 293–298.
- Chen, Y. and Dionysiou, D. (2006), “TiO2 Photocatalytic Films on Stainless Steel: The Role of Degussa P-25 in Modified Sol–Gel Methods”, Applied Catalysis B: Environmental 62, 255–264.
- Gallo, J., Mactal, M., Borja, J. and Gallardo, S. (2009). Photocatalytic Color Removal of Dyes using NanoTiO2. 3rd ERDT Conference, Manila, Philippines.
- Han, F., Kambala, V., Srinivasan, M., Rajarathnam, D. and Naidu, R. (2009). Tailored TiO2 Photocatalyst for the Degradation of Organic Dyes in Wastewater Treatment: A Review. Applied Catalysis A: General, 1-62.
- Liu, R., Chiu, H., Shiau, C., Yeh, R. and Hung, Y. (2007). Degradation and Sludge Production of Textile Dyes by Fenton and Photo-Fenton Processes. Dye and Pigments 73, 1-6
- Rauf, M. and Ashraf, S. (2009). Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solutions. Chemical Engineering Journal 151, 10-18.
- Sonawane, R., Kale, B. and Dongare, M. (2004). Preparation and Photocatalytic Activity of Fe-TiO2 Thin Films Prepared by Sol-gel Dip Coating. Material Chemistry and Physics 85, 52-57.
- Venkatachalam, N., Palanichamy, M. and Muregesan, V. (2007). Sol-gel Preparation and Characterization of Nanosize TiO2: Its Photocatalytic Performance. Materials Chemistry and Physics 104, 454-459.
- Wang, W., Silva, C. and Faria, J. (2007), “Photocatalytic Degradation of Chromotrope 2R using Nanocrystalline TiO2/Activated- Carbon Composite Catalyst”, Applied Catalysis B: Environmental 70, 470-478.
DOI: https://doi.org/10.22146/ajche.50064
Article Metrics
Abstract views : 1612 | views : 1161Refbacks
- There are currently no refbacks.
ASEAN Journal of Chemical Engineering (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.