Artikel penelitian
Vol 16 No 1 (2022): Volume 16, Number 1, 2022
Efisiensi energi dan evaluasi keselamatan pada modifikasi penggantian katalis unit Desulfurizer di PT. Kaltim Methanol Industri (KMI), Bontang, Indonesia
PT. Kaltim Methanol Industri (KMI). Wisma KIE Lt.1, Jl. Paku Aji, Kawasan Industri Pupuk Kaltim, Bontang 75313, Kalimantan Timur, Indonesia
PT. Kaltim Methanol Industri (KMI). Wisma KIE Lt.1, Jl. Paku Aji, Kawasan Industri Pupuk Kaltim, Bontang 75313, Kalimantan Timur, Indonesia
PT. Kaltim Methanol Industri (KMI). Wisma KIE Lt.1, Jl. Paku Aji, Kawasan Industri Pupuk Kaltim, Bontang 75313, Kalimantan Timur, Indonesia
PT. Kaltim Methanol Industri (KMI). Wisma KIE Lt.1, Jl. Paku Aji, Kawasan Industri Pupuk Kaltim, Bontang 75313, Kalimantan Timur, Indonesia
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada. Jl Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada. Jl Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
Abstrak
Metanol sebagai salah satu bahan kimia dasar dapat digunakan secara langsung sebagai campuran bahan bakar untuk internal combustion engines atau bahan baku antara (intermediate chemicals) untuk memproduksi beragam bahan kimia penting seperti formaldehyde, asam asetat, dimethyl ether (DME), dan methyl tertiary butyl ether (MTBE). PT. KMI memproduksi metanol dengan bahan baku gas alam melalui proses steam reforming. Penelitian ini bertujuan untuk mendapatkan produk yang berkualitas dan proses produksi yang efisien, dibutuhkan metana yang terbebas dari pengotor sulfur. Untuk itu diperlukan unit desulfurizer berupa fixed bed berisi katalis CoMo pada unit 010-D03 dan adsorben penjerap sulfur pada unit 010-D01. Pada tahun 2019 telah dilakukan penggantian katalis 3 in 1 yang mampu menghilangkan sulfur dalam satu tangki fixed bed (010-D01). Berdasarkan data dari logbook operasi pabrik berupa pressure drop, flowrate, suhu, dan komposisi dilakukan evaluasi penghematan energi dan keselamatan dari modifikasi ini. Penggantian katalis baru pada tangki 010-D01 yang memungkinkan tangki CoMo dioperasikan dalam kondisi kosong sehingga mengurangi pressure drop di dalam sistem. Adanya penurunan pressure drop mengakibatkan konsumsi steam pada kompresor NG menjadi berkurang sehingga didapatkan penghematan energi sebesar 379 kg/jam yang setara dengan 40913 USD/tahun atau 8545 MMBtu/tahun. Untuk menjamin keselamatan dari modifikasi, dilakukan evaluasi terhadap potensi deflagration-detonation dan api menggunakan komponen segitiga api. Berdasarkan parameter keberadaan oksigen, diagram flammability, dan autoignition temperature, modifikasi yang mengoperasikan tangki 010-D03 dalam kondisi kosong, aman dari bahaya terbentuknya api dan ledakan. Dengan demikian, modifikasi penggantian katalis dan pengosongan tangki 010-D03 terkonfirmasi meningkatkan efisiensi energi dan menghemat pemakaian sumber daya alam, sehingga mendorong aplikasi nyata sustainable development di dunia industri.
Referensi
AlSayed A, Fergala A, Khattab S, ElSharkawy A, Eldyasti A. 2018. Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst. Applied Energy. 211:755–763. doi: 10.1016/j.apenergy.2017.11.090. https://linkinghub.elsev ier.com/retrieve/pii/S0306261917316896.
Blumberg T, Tsatsaronis G, Morosuk T. 2019. On the economics of methanol production from natural gas. Fuel. 256:115824. doi:10.1016/j.fuel.2019.115824. https://linkin ghub.elsevier.com/retrieve/pii/S0016236119311767.
Chahbani M, Tondeur D. 2001. Pressure drop in fixed-bed adsorbers. Chemical Engineering Journal. 81(1-3):23–34. doi:10.1016/S1385-8947(00)00215-1. https://linkinghub .elsevier.com/retrieve/pii/S1385894700002151.
Hamelinck C, Faaij A, Denuil H, Boerrigter H. 2004. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy. 29(11):1743–1771. doi:10.1016/j. energy.2004.01.002. https://linkinghub.elsevier.com/re trieve/pii/S0360544204000027.
Hussain M, Ihm SK. 2009. Synthesis, Characterization, and Hydrodesulfurization Activity of New Mesoporous Carbon Supported Transition Metal Sulfide Catalysts. Industrial Engineering Chemistry Research. 48(2):698–707. do i:10.1021/ie801229y. https://pubs.acs.org/doi/10.1021/ie8 01229y.
Jun D, Ishii K, Iida N. 2003. Autoignition and Combustion of Natural Gas in a 4 Stroke HCCI Engine. JSME International Journal Series B. 46(1):60–67. doi:10.1299/jsmeb.46.60. http://www.jstage.jst.go.jp/article/jsmeb/46/1/46_1_60/ _article.
Kim D, Han J. 2020. Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst. Energy. 198:117355. doi:10.1016/j.energy.2020.117355. https://linkinghub.elsevier.com/retrieve/pii/S03605442 2030462X.
Kung HH. 1992. Deactivation of methanol synthesis catalysts - a review. Catalysis Today. 11(4):443–453. doi:10.1016/09 20-5861(92)80037-N. https://linkinghub.elsevier.com/ retrieve/pii/092058619280037N.
Lappas AA, Budisteanu R, DrakakiIacovos K, Vasalos V. 2018. Production of low aromatics and low sulfur diesel in a hydrodesulfurization (HDS) pilot plant unit. Global NEST Journal. 1(1):15–22. doi:10.30955/gnj.000121.
Lythcke-Jørgensen C, Clausen LR, Algren L, Hansen AB, Münster M, Gadsbøll RØ, Haglind F. 2017. Optimization of a flexible multi-generation system based on wood chip gasification and methanol production. Applied Energy. 192:337–359. doi:10.1016/j.apenergy.2016.08.092. https: //linkinghub.elsevier.com/retrieve/pii/S03062619163119 04.
Masoomi MY, Bagheri M, Morsali A. 2015. Application of Two Cobalt-Based Metal–Organic Frameworks as Oxidative Desulfurization Catalysts. Inorganic Chemistry. 54(23):11269–11275. doi:10.1021/acs.inorgchem.5b01850. https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b018 50.
Renó MLG, del Olmo OA, Palacio JCE, Lora EES, Venturini OJ. 2014. Sugarcane biorefineries: Case studies applied to the Brazilian sugar–alcohol industry. Energy Conversion and Management. 86:981–991. doi:10.1016/j.enconman.2 014.06.031. https://linkinghub.elsevier.com/retrieve/pii /S0196890414005561.
Robinson C, Smith D. 1984. The auto-ignition temperature of methane. Journal of Hazardous Materials. 8(3):199–203. doi:10.1016/0304-3894(84)85001-3. https://linkinghub .elsevier.com/retrieve/pii/0304389484850013.
Semin RAB. 2008. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines Semin , Rosli Abu Bakar Automotive Excellent Center , Faculty of Mechanical Engineering ,. American J. of Engineering and Applied Sciences. 1(4):302–311.
Swain PK, Das L, Naik S. 2011. Biomass to liquid: A prospective challenge to research and development in 21st century. Renewable and Sustainable Energy Reviews. 15(9):4917– 4933. doi:10.1016/j.rser.2011.07.061. https://linkinghub.e lsevier.com/retrieve/pii/S1364032111003042.
Xia W. 2021. Comparison of Several Methods for Industrial Methanol Production. 1:32–36. doi:10.23977/mpcr.2021.0 10106.
Xian-quan H. 2017. Analysis of Fine Desulfurization Process and Selection of DesulfurizerinMethanol Production. Technical report. Chemical Engineering Design Communications.
Xu D, Zhang Y, Hsieh TL, Guo M, Qin L, Chung C, Fan LS, Tong A. 2018. A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas. Applied Energy. 222:119–131. doi:10.1016/j.ap energy.2018.03.130. https://linkinghub.elsevier.com/re trieve/pii/S0306261918304689.
Yadav P, Athanassiadis D, Yacout DM, Tysklind M, Upadhyayula VK. 2020. Environmental Impact and Environmental Cost Assessment of Methanol Production from wood biomass. Environmental Pollution. 265:114990. doi:10.1016/j. envpol.2020.114990. https://linkinghub.elsevier.com/re trieve/pii/S0269749120306849.