Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 15 No 2 (2021): Volume 15, Number 2, 2021

Effect of surfactant type on synthesis and characteristics of nanonickel hydroxide

DOI
https://doi.org/10.22146/jrekpros.69723
Telah diserahkan
November 20, 2023
Diterbitkan
Desember 31, 2021

Abstrak

Nikel hidroksida mempunyai peranan yang vital dalam berbagai aplikasi, terutama sebagai bahan pendukung bahan penyimpan energi. Nikel hidroksida dapat disintesis melalui metode pengendapan hidroksida. Namun produk yang terbentuk dengan metode ini mungkin berukuran besar atau lebih dari 100 nm karena tahap aglomerasi dapat terjadi dengan mudah. Penelitian ini bertujuan untuk mempelajari pengaruh jenis surfaktan dalam sintesis dan karakterisasi nanopartikel nikel hidroksida. Larutan nikel sulfat (NiSO4) digunakan sebagai larutan prekursor, sedangkan larutan natrium hidroksida (NaOH) 5M digunakan sebagai zat pengendap. Surfaktan yang diteliti adalah alkil benzena sulfonat (ABS), natrium dodesil sulfat (SDS), setiltrimetilamonium bromida (CTAB), dan polivinilpirolidon (PVP). Proses sintesis nikel hidroksida dilakukan pada suhu 50 oC selama 1 jam. Konsentrasi surfaktan yang digunakan adalah pada konsentrasi misel kritis (CMC), dimana CMC untuk ABS, SDS, CTAB, dan PVP adalah 0,01; 0,05; 3; dan 0,5 %b/v, masing-masing. Sintesis nanopartikel nikel hidroksida yang dilakukan berhasil mengendapkan hampir 100% ion Ni2+. Karakterisasi produk yang telah dilakukan menunjukkan bahwa surfaktan ABS menghasilkan produk nanopartikel nikel hidroksida terbaik dengan ukuran partikel 3,12–4,47 nm.

Referensi

Bakshi, M.S., 2016, How surfactants control crystal growth of nanomaterials, Cryst. Growth Des., 16, 1104–1133.

Castro, L., Blázquez, M.L., Muñoz, J.Á., Gonzalez, F.G., and Ballester, A., 2014, Mechanism and applications of metal nanoparticles prepared by bio-mediated process, Rev. Adv. Sci. Eng., 3(3), 1–18.

Couto, G.G., Klein, J.J., Schreiner, W.H., Mosca, D.H., de Oliveira, A.J.A., and Zarbin, A.J.G., 2007, Nickel nanoparticles obtained by a modified polyol process: Synthesis, characterization, and magnetic properties, J. Colloid Interface Sci., 311, 461–468.

Dahman, Y., Javaheri, H., Chen, J., and Sulaiman, B.A.-C. 2017, Nanoparticles in: Nanotechnology and Functional materials for Engineers, Elsevier Inc., 93–119.

Giarola, D.A., da Silva, P.R.C., Urbano, A., de Oliveira, F.M., Tarley, C.R.T., and Antonia, L.H.A., 2014, Surfactant effect on electrochemical-induced synthesis of α-Ni(OH)2, J. Solid State Electrochem., 18, 497–504.

Gosens, I., Post, J.A., de la Fonteyne, L.J.J., Jansen, E.H.J.M., Geus, J.W., Cassee, F.R., and de Jong, W.H., 2010, Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation, Part. Fibre Toxicol., 7(37), 1–11.

Hadden, J.H.L., Ryan, M.P., and Riley, D.J., 2019, Examining the charging behaviour of nickel hydroxide nanomaterials, Electrochem. Commun., 101, 47–51.

Hafeez, M., Shaheen, R., Akram, B., Zain-Ul-Abdin, Haq, S., Mahsud, S., Ali, S., and Khan, R.T., 2020, Green synthesis of cobalt oxide nanoparticles for potential biological applications, Mater. Res. Express, 7(2), 1-8.

Hall, D.S., Lockwood, D.J., Bock, C., and MacDougall, B.R., 2015, Nickel hydroxides and related materials: A review of their structures, synthesis and properties, Proc. R. Soc. A, 471(2140792), 1-65.

Jabariyan, S. and Zanjanchi, M.A., 2012, A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41, Ultrason. Sonochem., 19, 1087–1093.

Jayashree, R.S., Kamath, P.V., and Subbanna, G.N., 2000, The effect of crystallinity on the reversible discharge capacity of nickel hydroxide, J. Electrochem. Soc., 147(6), 2029-2032.

Kaur, I., Ellis, L.-J., Romer, I., Tantra, R., Carriere, M., Allard, S., Mayne-L’hermite, M., Minelli C., Unger, W., Potthoff A., Rades, S., and Valsami-Jones, E., 2017, Dispersion of nanomaterials in aqueous media: Towards protocol optimization, J. Visualized. Exp., 2017 (130), 1–23.

Kiani, M.A., Mousavi, M.F., and Ghasemi, S., 2010, Size effect investigation on battery performance: Comparison between micro-and nano-particles of β-Ni(OH)2 as nickel battery cathode material, J. Power Sources, 195, 5794–5800.

Kobayashi, H., Mitsuka, Y., and Kitagawa, H., 2016, Metal Nanoparticles covered with a metal-organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions, Inorg. Chem., 55 (15), 7301–7310.

Lewis, A., 2017, Precipitation of heavy metals, in: Rene, E.R., Sahinkaya, E., Lewis, A. and Lens, P.N.L. (Eds.), Sustainable Heavy Metal Remediation, Volume 2: Case studies, Springer International Publishing AG., Cham, pp. 101–120.

Li, Q., Liao, Y., Liu, Y.-J., Mu, Q.-Y., and Wang, Y.-D., 2012, Synthesis and characterisation of Ni(OH)2 nanosheets by simple route at low temperature, Materials Technology, 27(1), 104–106.

Li, Q., Wang, L.-S., Hu, B.-Y., Yang, C., Zhou, L., and Zhang, L., 2007, Preparation and characterization of NiO nanoparticles through calcination of malate gel, Mater. Lett., 61, 1615–1618.

Loosli, F. and Stoll, S., 2017, Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles, Environ. Sci.: Nano, 4, 203–211.

Lyman, P.L., 2020, Pengaruh temperatur, waktu, dan tahap presipitasi pada proses presipitasi nikel hidroksida dari larutan ekstrak spent catalyst, Thesis (Research Report). Parahyangan Catholic University. Bandung.

Mahaleh, Y.B.M., Sadrnezhaad, S.K., and Hosseini, D., 2008, NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size, J. Nanomater., 2008 (1), 1-4.

Mahbubul, I.M., Saidur, R., Amalina, M.A., Elcioglu, E.B., and Okutucu-Ozyurt, T., 2015, Effective ultrasonication process for better colloidal dispersion of nanofluid, Ultrason. Sonochem., 26, 361–369.

Morsy, S.M.I., 2014, Role of surfactants in nanotechnology and their applications, Int. J. Curr. Microbiol. Appl. Sci., 3(5), 237–260.

Myers, D., 2006, Surfactant Science and Technology, third ed., John Wiley & Sons, Inc., New Jersey, p. 118.

Ndolomingo, M.J., Bingwa, N., and Meijboom, R., 2020, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as

catalysts, J. Mater. Sci., 55, 6195–6241.

Nickel Institute, 2015. Nickel compounds: the inside story …, Nickel Inst. Press, 1–16.

Pradhan, S.R., Dash, B., Sanjay, K., and Subbaiah, T., 2013, Extraction of Ni (II) from spent hydrodesulfurization HDS catalyst through leaching and electroless precipitation of Ni(OH)2, Metall. Mater. Trans. B, 44B, 469–476.

Pradhan, S., Hedberg, J., Blomberg, E., Wold, S., and Wallinder, I.O., 2016, Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles, J. Nanopart. Res., 18, 1–14.

Ramesh, T.N. and Kamath, P.V., 2006, Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder, J. Power Sources, 156, 655–661.

Rane, A.V., Kanny, K., Abitha, V.K. and Thomas, S., 2018, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, Synth. Inorg. Nanomater., 121-139.

Shah, J., Ranjan, M., Sooraj, K.P., Sonvane, Y., and Gupta, S.K., 2019, Surfactant prevented growth and enhanced thermophysical properties of CuO nanofluid, J. Mol. Liq., 283, 550–557.

Singh, V.H. and Sharma, P., 2010, Chemical route to nanotechnology, International Journal of Advanced Engineering Technology, I(III), 114–129.

Slavin, Y.N., Asnis, J., Häfeli, U.O., and Bach, H., 2017, Metal nanoparticles: Understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol, 15(65), 1–20.

Song, Q., Tang, Z., Guo, H., and Chan, S.L.I., 2002, Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values, J. Power Sources, 112, 428–434.

Song, T., Gao, F., Guo, S., Zhang, Y., Li, S., You, H., and Du, Y., 2021, A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles, Nanoscale, 13, 3895–3910.

Taurozzi, J.S., Hackley, V.A., and Wiesner, M.R., 2011, Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment issues and recommendations, Nanotoxicology, 5(4), 1–19.

Tientong, J., Garcia, S., Thurber, C.R., and Golden, T.D., 2014, Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction, J. Nanotechnol., 2014, 1-6.

Wanta, K.C., Astuti, W., Perdana, I., and Petrus, H.T.B.M., 2020, Kinetic study in atmospheric pressure organic acid leaching: Shrinking core model versus lump model, Minerals, 10(7), 1–10.

Wanta, K.C., Tanujaya, F.H., Putra, F.D., Susanti, R.F., Gemilar G.P., Astuti, W., and Petrus, H.T.B.M. 2020, Synthesis and characterization of nickel hydroxide from extraction solution of spent catalyst, Metalurgi, 35(3), 111-118.

Wanta, K.C., Putra, F.D., Susanti, R.F., Gemilar, G.P., Astuti, W., Virdhian, S., and Petrus, H.T.B.M., 2019, Pengaruh derajat keasaman (pH) dalam proses presipitasi hidroksida selektif ion logam dari larutan ekstrak spent catalyst, Jurnal Rekayasa Proses, 13 (2), 94-105.

Xin, X., Lü, Z., Zhou, B., Huang, X., Zhu, R., Sha, X., Zhang, Y., and Su, W., 2007, Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO, J. Alloys Compd., 427, 251–255.

Yaraki, M.T. and Tan, Y.N., 2020, Metal nanoparticles-enhanced biosensors: Synthesis, design and applications in fluorescence enhancement and surface-enhanced raman scattering, Chem. Asian J., 15 (20), 3180–3208.