Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 15 No 2 (2021): Volume 15, Number 2, 2021

The effect of nutrients mixture on The biomass and lipid production from microalgae Botryococcus braunii mutated by UV-C rays

DOI
https://doi.org/10.22146/jrekpros.69228
Telah diserahkan
November 20, 2023
Diterbitkan
Desember 31, 2021

Abstrak

Nutrisi merupakan salah satu faktor terpenting dalam pertumbuhan mikroalga. Penelitian ini dilakukan untuk mempelajari pengaruh campuran nutrisi terhadap produksi biomassa dan lipid Botryococcus braunii. Mikroalga B. braunii dibudidayakan dalam media nutrisi komersial kombinasi pupuk pertanian amonium sulfat (ZA), urea, dan tripel superfosfat (TSP). Sebelum proses budidaya, B. braunii dipaparkan dengan sinar UV-C (254 nm) selama 3 menit. Konsentrasi dan jenis pupuk sebagai sumber nitrogen dibagi menjadi empat jenis campuran yaitu FM-1, FM-2, FM-3, dan FM-4 dibandingkan dengan unsur hara Walne untuk mempelajari pengaruhnya terhadap pertumbuhan mikroalga dan lipid. FM-1 yang terdiri dari 150 mg/L ZA, 7,5 mg/L urea, dan 25 mg/L TSP menghasilkan pertumbuhan terbaik untuk strain mikroalga asli dan mutasi dibandingkan dengan nutrisi Walne dan campuran nutrisi lainnya. Mikroalga yang bermutasi menunjukkan pertumbuhan yang lebih sedikit dibandingkan strain mikroalga asli. Namun proses mutasi secara signifikan meningkatkan kandungan lipid pada mikroalga. Pada strain mikroalga asli, FM-4 yang terdiri dari 136,3 mg/L urea dan 50 mg/L TSP menghasilkan lipid terendah yaitu 8,96%. Setelah dipaparkan sinar UV-C, lipid pada medium FM-4 meningkat menjadi 55,11%. Hasil penelitian menunjukkan bahwa penggunaan pupuk komersial dan paparan sinar UV-C pada mikroalga mempunyai potensi tinggi dalam penyiapan lipid sebagai bahan baku biodiesel yang dapat diterapkan secara efektif pada budidaya mikroalga skala besar.

Referensi

Agirman, N., & Cetin, A. (2017). Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate. Natural Science Discovery, 3(3), 33–33.

Alexandrova, A. N., & Jorgensen, W. L. (2010). Why Urea Eliminates Ammonia Rather Than Hydrolyzes in Aqueous Solution. Journal of Physical Chemistry B, 111(4), 720–730.

Ammar, S. H. (2016). Cultivation of Microalgae Chlorella vulgaris in airlift photobioreactor for Biomass Production using commercial NPK nutrients. Al-Khwarizmi Engineering Journal, 12(1), 90–99.

Blanken, W., Postma, P. R., de Winter, L., Wijffels, R. H., & Janssen, M. (2016). Predicting microalgae growth. Algal Research, 14, 28–38.

Borderie, F., Alaoui-sehmer, L., & Bousta, F. (2014). Cellular and molecular damage caused by high UV-C irradiation of the cave-harvested green alga Chlorella minutissima: Implications for cave management. International Biodeterioration & Biodegradation, 93, 118–130.

Chisti, Y. (2007). Algae production comparison. Biotechnology Advances, 25(25), 294–306.

Cooper, G. M. (2019). The Cell: A Molecular Approach, Eighth Edition. Oxford University Press, New York.

Coutteau, P. (1996). Manual on the production and use of live food for aquaculture: Micro-algae. FAO. Belgium, FAO Fish. Tech. Pap., 7–48.

Covell, L., Machado, M., Vaz, M. G. M. V., Soares, J., Batista, A. D., Araújo, W. L., Martins, M. A., et al. (2020). Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess and Biosystems Engineering, 43(0123456789), 1123–1131.

Gao, F., Yang, H. L., Li, C., Peng, Y. Y., Lu, M. M., Jin, W. H., Bao, J. J., et al. (2019). Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresource Technology, 282(March), 118–124.

Isnansetyo, A., & Kurniastuty. (1995). Teknik Kultur Phytoplankton Zooplankton. Kanisius, Yogyakarta.

Lam, M. K., & Lee, K. T. (2012). Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 94, 303–308.

Liu, S., Zhao, Y., Liu, L., Ao, X., Ma, L., Wu, M., & Ma, F. (2015). Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella sp. via UV Irradiation. Applied Biochemistry and Biotechnology, 175(7), 3507–3518.

Lourenço, S. O., Barbarino, E., Mancini-Filho, J., Schinke, K. P., & Aidar, E. (2002). Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: An evaluation for aquaculture. Phycologia, 41(2), 158–168.

Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202.

El Nabris, K. J.-A. (2012). Development of Cheap and Simple Culture Medium for the Microalgae Nannochloropsis sp. Based on Agricultural Grade Fertilizers Available in the Local Market of Gaza Strip (Palestine). Journal of Al Azhar University (Natural Science), 14(January 2012), 61–76.

Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.

Ramadhani, A. P., Prashantyo, M. H., Soedarmodjo, T. P., & Widjaja, A. (2020). The effect UV-B mutation on biodiesel from microalgae Botryococcus braunii using esterification, transesterification and combination of esterification-transesterification. AIP Conference Proceedings, Vol. 2217, AIP Publishing, Indonesia: Surakarta, pp. 030021–1–030021–8.

Sarayloo, E., Tardu, M., Sabri, Y., Simsek, S., Cevahir

, G., & Erkey, C. (2017). Understanding lipid metabolism in high-lipid-producing Chlorella vulgaris mutants at the genome-wide level. Algal Research, 28(November), 244–252.

Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532–1553.

Sivaramakrishnan, R., & Incharoensakdi, A. (2017). Enhancement of lipid production in Scenedesmus sp. Bioresource Technology, 235, 366–370.

Skerratt, J. H., Davidson, A. D., Nichols, P. D., & McMeekin, T. A. (1998). Effect of Uv - B on Lipid Content of Three Antarctic Marine Phytoplankton. Science, 49(4), 999–1007.

Thurakit, T., Pumas, C., Pathom-aree, W., Pekkoh, J., & Peerapornpisal, Y. (2018). Enhancement of Biomass, Lipid and Hydrocarbon Production from Green Microalga, Botryococcus braunii AARL G037, by UV-C Induction. Chiang Mai Journal of Science, 45(7), 2637–2651.

Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of Taiwan Institute of Chemical Engineers, 40(1), 13–20.

Xu, N., Zhang, X., Fan, X., Han, L., & Zeng, C. (2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). Journal of Applied Phycology, 13, 463–469.

Xue, L., Zhang, Y., Zhang, T., An, L., & Wang, X. (2005). Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Critical Reviews in Microbiology, 31(2), 79–89.

Zullaikah, S., Utomo, A. T., Yasmin, M., Ong, L. K., & Ju, Y. H. (2019). Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. Advances in Eco-Fuels and Sustainable Energy, Elsevier Ltd., 237–276.