Artikel penelitian
Vol 14 No 1 (2020): Volume 14, Number 1, 2020
Pengaruh reagen pelindian pada sintesis ZnO dari debu tungku busur listrik
Balai Penelitian Teknologi Mineral, LIPI Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan, Lampung 35361
Balai Besar Kerajinan dan Batik, Kementerian Perindustrian Jl Kusumanegara, Yogyakarta
Balai Besar Kerajinan dan Batik, Kementerian Perindustrian Jl Kusumanegara, Yogyakarta
Balai Penelitian Teknologi Mineral, LIPI Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan, Lampung 35361
Balai Penelitian Teknologi Mineral, LIPI Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan, Lampung 35361
Balai Besar Kerajinan dan Batik, Kementerian Perindustrian Jl Kusumanegara, Yogyakarta
Balai Besar Kerajinan dan Batik, Kementerian Perindustrian Jl Kusumanegara, Yogyakarta
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
Abstrak
ZnO nanopartikel disintesis dengan metode hidrometalurgi sederhana menggunakan bahan baku berupa debu tungku busur listrik yang merupakan limbah padat industri baja tahan karat. Debu busur listrik mengandung 68,81% Zn dalam bentuk zincite (ZnO) dan simonkolleite (H10Cl2O9Zn5). Proses sintesis dilakukan dalam dua tahap utama yaitu pelindian dan pengendapan alkali. Pada penelitian ini dipelajari pengaruh reagen pelindian, suhu pelindian, dan konsentrasi reagen pelindian pada proses pelindian terhadap persen ekstraksi Zn dari debu tungku busur listrik dan karakteristik produk ZnO yang dihasilkan. Hasil percobaan menunjukkan bahwa asam asetat adalah reagen pelindian yang memberikan persen ekstraksi Zn tertinggi. Hasil percobaan juga menunjukkan bahwa semakin tinggi suhu dan konsentrasi asam yang digunakan, maka semakin meningkat persen ekstraksi Zn yang diperoleh. Tetapi pada konsentrasi asam 2M, suhu pelindian tidak terlalu berpengaruh karena dengan konsentrasi asam asetat 2M pada semua kondisi suhu pelindian, persen ekstraksi Zn yang diperoleh adalah 100%. Hasil pelindian menggunakan asam asetat pada kondisi optimum menghasilkan produk ZnO dengan kemurnian sekitar 96%. Data XRD juga menunjukkan bahwa ZnO yang terbentuk memiliki ukuran nano.
Referensi
Alfarisa, Suhufa, Rifai, D.A., dan Toruan, P.L., 2018, Studi difraksi sinar-X struktur nano seng oksida (ZnO) [X-ray diffraction study on ZnO nanostructures], Risalah Fisika, 2 (2), 53-57
Astuti,W., Hirajima,T., Sasaki,K., and Okibe, N., 2016, Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores, Minerals Engineering, 85, 1–16.
Bindu, P., and Thomas, S., 2014, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8, 123–34.
de Buzina, PJWK, Heckb, N.C., and Vilela, A.C.F, 2017, EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes, J. Mater. Res. Technol, 6(2), 194–202.
Dutrizac, J.E. and Chen, T.T., 1998, The role of hydrometallurgy in the recycling of zinc, copper and lead, Acta Metall Slovaca, 1, 5–28.
Darvishi, E., Kahrizi, D., Arkan, E., 2019, Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods, J. Mol. Liq., 286, 110831.
Geetha, M.S., Nagabhushana, H., and Shivananjaiah, H.N., 2016, Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent, Journal of Science: Advanced Materials and Devices, 1, 301-310.
Havlik, T., Souza, B.V., Bernardes, A.M., Schneider, I.A.H., and Miskufova A., 2006, Hydrometallurgical processing of carbon steel EAF dust., J. Hazard Mater. B, 135, 311–8.
Jha, M.K., Kumar, V., and Singh, R.J.,2001, Review of hydrometallurgical recovery of zinc from industrial wastes, Resour. Conserv. Recycl., 33, 1–22.
Kołodziejczak-Radzimska, A. and Jesionowski, T., 2014, Zinc oxide—from synthesis to application: A review, Materials, 7, 2833-2881
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Buszewski, B., 2017, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Advances in Colloid and Interface Science, 249, 37–52
Mager, K., Meurer, U., and Wirling, J.,2003, Minimizing dioxin and furan emissions during zinc dust recycle by the Waelz process, JOM, 55(8), 21–5.
Matinisea, N., Fukua, X.G., Kaviyarasua, K., Mayedwa, N., and Maazaa, M., 2016, ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation, Applied Surface Science, 406, 339–347.
Nakamura, T., Shibata, E., Takasu, T., and Itou, H.,2008, Basic considerationon EAF dust treatment using hydrometallurgical processes, Resour. Process, 55(3), 144–8.
Quijorna, N., de Pedro, M., Romero, M., and Andrès, A., 2014, Characterisation of the sintering behaviour of Waelz slagfrom electric arc furnace (EAF) dust recycling for use in theclay ceramics industry, J. Environ. Manag., 132, 278–86.
Sinclair, R.J.,2005, The Extractive Metallurgy of Zinc. Spectrum Series, Vol. 13, 1st ed., The Australasian Institute of Mining and Metallurgy, Victoria
Tsakiridis, P.E., Oustadakis, P., Katsiapi, A., and Agatzini-Leonardous, S., 2010, Hydrometallurgical process for zinc recovery from electricarc furnace dust (EAFD). Part II: Downstream processing andzinc recovery by electrowinning, J. Hazard. Mater., 179, 8–14.
Xia, D.K. and Pickles, C.A., 1999, Caustic roasting and leaching of electricarc furnace dust, Can. Metall. Q., 38 (3), 175–86.