Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 13 No 1 (2019): Volume 13, Number 1, 2019

Proses peruraian anaerobik palm oil mill effluent dengan media zeolit termodifikasi

DOI
https://doi.org/10.22146/jrekpros.39206
Submitted
November 16, 2023
Published
June 30, 2019

Abstract

This work evaluated the effect of modified zeolite as microbial immobilization medium in anaerobic digestion of palm oil mill effluent (POME). The affinity of microorganisms to attach and grow on the media surface could be increased by the addition of micro-nutrient into the media. The effect of micro-nutrient addition was studied in 1000 mL Erlenmeyer flask as batch reactors. Experiments were conducted for 30 days. The concentration of soluble chemical oxygen demand (COD) in substrate was 8000 mg/L. Zeolite was impregnated with nickel (Ni) and zinc (Zn) at individual concentration of 2.7x10-3 mg Ni/g zeolite and 3.5x10‑3 mg Zn/g zeolite. The influence of each modified zeolite was determined by periodic measurement of sCOD, volatile fatty acid (VFA), pH, and biogas production. Cumulative biogas productions in this study were 252.44; 172.13; 57.70 ml from Ni-modified, Zn-modified and natural zeolites, respectively. The highest sCOD removal was obtained in reactor with Zn-modified zeolite with 38.22% removal, followed by 33.96% with Ni-modified zeolite, and 27.87% removal with natural zeolite.

References

  1. Anderson, K., Sallis, P., and Uyanik, S., 2003, Anaerobic Treatment Processes, Handb. Water Wastewater Microbiol., Elsevier, Turkey, pp. 391–426.
  2. Ayu, E.D., Halim, L., Mellyanawaty, M., Sudibyo, H., and Budhijanto, W., 2017, The effect of natural zeolite as microbial immobilization media in anaerobic digestion at various concentrations of palm oil mill effluent (POME), AIP Conference Proceedings 1840, 110005
  3. Burghate, S.P., and Ingole, N.W., 2013, Fluidized bed biofilm reactor – A novel wastewater treatment reactor, Int. J. Res. Environ. Sci. Technol., 3 (4), 145–155.
  4. Chin, M.J., Poh, P.E., Tey, B.T., Chan, E.S., and Chin, K.L., 2013, Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective, Renew. Sustain. Energy Rev., 26, 717–726.
  5. Deublein, D., and Steinhauser, A., 2008, Biogas from Waste and Renewable Resources, Wiley-VCH Verlag GmbH & Co. KGaA, Germany.
  6. Gerardi, M.H., 2003, The Microbiology of an Anaerobic Digesters, John Willey & Sons, Inc., Canada.
  7. Halim, L., Mellyanawaty, M., Cahyono, R.B., Sudibyo, H., and Budhijanto, W., 2017, Anaerobic digestion of palm oil mill effluent with lampung natural zeolite as microbe immobilization medium and digested cow manure as starter, AIP Conference Proceedings, 1840, 110003
  8. Hosseini, S.E., and Wahid, M.A., 2013, Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia, Renew. Sustain. Energy Rev., 19, 454–462.
  9. Lam, M.K., and Lee, K.T., 2011, Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection, Biotechnol. Adv., 29 (1), 124–141.
  10. Liew, W.L., Kassim, M.A., Muda, K., Loh, S.K., and Affam, A.C., 2015, Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review, J. Environ. Manage., 149, 222–235.
  11. Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., and Angeles de la la Rubia, M., 2012, Application of natural zeolites in anaerobic digestion processes: A review, Appl. Clay Sci., 58, 125–133.
  12. Nicolella, C., van Loosdrecht, M.C.M., and Heijnen, J.J., 2000, Wastewater treatment with particulate biofilm reactors, J. Biotechnol., 80 (1), 1–33.
  13. Purnomo, C.W., Mellyanawaty, M., and Budhijanto, W., 2017, Simulation and experimental study on iron impregnated microbial immobilization in zeolite for production of biogas, waste and biomass valorization, 8 (7), 2413–2421
  14. Ramadhani, L.I., Damayanti, S.I., Sudibyo, H., and Budhijanto, W., 2017, Kinetics of anaerobic digestion of palm oil mill effluent (POME) in double stage batch reactor with recirculation and fluidization of microbial immobilization media, IOP Conf. Ser.: Mater. Sci. Eng., 316, 012071
  15. Seadi, T. Al, Dominik, R., Prassl, H., and Köttner, M., 2008, Biogas Handbook, edited by Al Seadi, T., University of Southern Denmark Esbjerg, Esbjerg, Denmark.
  16. Setyowati, P.A.H., Halim, L., Mellyanawaty, M., Sudibyo, H., and Budhijanto, W., 2017, Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization, AIP Conference Proceedings 1840, 110004.
  17. Shuler, M.L., and Kargi, F., 2002, Bioprocess Engineering, 2nd ed., Prentice-Hall, Inc., New Jersey, USA.
  18. Ward, A.J., Hobbs, P.J., Holliman, P.J., and Jones, D.L., 2008, Optimisation of the anaerobic digestion of agricultural resources, Bioresour. Technol., 99 (17), 7928–7940.
  19. Wu, L.J., Kobayashi, T., Kuramochi, H., Li, Y.Y., and Xu, K.Q., 2016, Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste, Arab. J. Sci. Eng., 41 (7), 2417–2427