Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 8 No 2 (2014): Volume 8, Number 2, 2014

Suhu dan rasio kukus optimum pada proses gasifikasi kukus berkatalis K2CO3 terhadap arang batu bara lignit hasil pirolisis dengan laju pemanasan terkontrol

DOI
https://doi.org/10.22146/jrekpros.11372
Telah diserahkan
November 15, 2023
Diterbitkan
Desember 31, 2014

Abstrak

Untuk memenuhi persyaratan bahan baku pembuatan bahan bakar cair sintetis (synfuel) melalui proses Fischer Tropsch, diperlukan proses gasifikasi batu bara lignit yang menghasilkan gas sintesis dengan rasio H2/CO ≈ 2,0 dan yield gas yang tinggi. Metode gasifikasi kukus dapat meningkatkan komposisi H2 dalam gas sintesis. Energi aktivasi reaksi gasifikasi dapat diturunkan dengan menggunakan katalis K2CO3. Laju pemanasan terkontrol pada tahap pirolisis menentukan ukuran pori arang yang berpengaruh pada komposisi dan yield gas sintesis. Penelitian ini dilakukan dengan mengumpankan arang batu bara lignit hasil pirolisis dengan laju pemanasan terkontrol yang memiliki luas permukaan pori 172,5 m2/g bersama dengan katalis K2CO3 ke dalam reaktor unggun tetap. Rasio massa kukus/arang yang ditambahkan bervariasi 2,0; 3,0; 4,0 dan suhu gasifikasi 675, 750, 825°C. Hasil penelitian ini menunjukkan bahwa kondisi reaksi gasifikasi yang sesuai untuk produksi gas sintesis bahan baku proses Fischer Tropsch adalah reaksi gasifikasi berkatalis K2CO3 pada suhu 675°C dan rasio massa kukus/arang 2,0. Kondisi ini menghasilkan gas sintesis dengan rasio H2/CO 2,07 dengan yield gas 1,128 mol/mol C (45% konversi karbon).

Referensi

  1. Belfiore, L.A., 2003. Transport phenomena for chemical reactor design. USA, John Wiley & Sons, pp. 5-23.
  2. Bell, D. A., Towler, B. F., Fan, M., 2011. Coal Gasification and its Applications, 1st Ed. Elsevier, London, UK, pp. 17-18.
  3. DOE, 2011. Fossil Energy: DOE’s Coal Gasification Technology R&D [online]. Department of Energy. Available from : www.fossil.energy.gov/programs/ powersystems/gasification [Accessed 14:09:13].
  4. ESDM, 2012. Peningkatan Nilai Tambah Mineral Melalui Pengolahan dan Pemurnian Mineral. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 7 Tahun 2012 BAB VII Pasal 20. Jakarta, Departemen Energi dan Sumber Daya Mineral, pp. 11.
  5. Handayani, I., Triantoro, A., Diniyati, D., 2013. Effect of K2CO3 as a catalyst in Indonesian low-rank coal gasification on product composition, Journal of Novel Carbon Resource Sciences 7, 68-73.
  6. Lee, I.G., Kim, M.S., Ihm, S.K., 2002. Gasification of glucose in supercritical water, Industrial & Engineering Chemistry Research 41, 1182-1188.
  7. Li, C., Wu, H., Qyun, D.M., 2002. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaClloaded samples, Fuel 81, 143-149.
  8. Luo, S., Zhou, Y., Yi, C., 2012. Syngas Production by Catalytic Steam Gasification of Municipal Solid Waste in Fixed-Bed Reactor, Energy 44, 391-395.
  9. Mohamad, M.F., Ramli, A., Misi, S.E.E., Yusup, S., 2011. Steam Gasification of Palm Kernel Shell (PKS) : Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products, World Academy of Science, Engineering and Technology 60, 232-237.
  10. PT Geoservices Balikpapan, 2013. Analisis Sampel Batu bara PT Multi Guna Kalimantan. Laporan Analisis. Divisi Laboratorium Batu bara Balikpapan PT Geoservices, Balikpapan, pp. 6.
  11. Satrio, J.A., Shanks, B.H., Wheelock, T.D., 2007. A combined catalyst and sorbent for enhanced hydrogen production from coal and biomass. Energy Fuel 21, 322-326.
  12. Shen, L., Xiao, J., Wu, J., Song, T., 2012. Experimental Investigation on Hydrogen Prouction for Biomass Gasification in Interconnected Fluidized Bed. Biomass and Bioenergy 36, 258- 267.
  13. Tristantini, D., 2009a. Production Of Synthesis Gas Through Oxidation Of Methane By Ca-Oxide Coal-Char To Achive Lower Oxidation Cost. Proceedings of International Symposium on Sustainable Energy and Environmental Protection (ISSEEP) 2009. Yogyakarta, Indonesia, 23-26 September 2009, pp. 6.
  14. Tristantini, D., 2009b. H2-Poor Bio-Syngas in FischerTropsch Synthesis Over Un-promoted and Rhenium Promoted-Alumina Supported Cobalt Catalysts: Effect Of Water Addition, Asean Journal of Chemical Engineering 9(1), 1-10.
  15. Wang J., Jiang, M., Yao, Y., Zhang, Y., Cao, J., 2009. Steam Gasification of Coal Char Catalyzed by K2CO3 for Enhanced Production of Hydrogen without Formation of Methane, Fuel 88, 1572- 1579.
  16. Wu, Y., Wang, J., Wu, S., Huang, S., Gao, J., 2010. Potassium Catalyzed Steam Gasification of Petroleum Coke for H2 Production: Reactivity, Selectivity, and Gas Realease, Fuel Processing Technology 92, 523-530.
  17. Yan, F. Luo, S., Hu, Z., Xiao, B., Cheng, G., 2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor : influence of temperature and steam on hydrogen yield and syngas composition, Bioresource Technology 101, 5633-5637.