Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 8 No 1 (2014): Volume 8, Number 1, 2014

Review model dan parameter interaksi pada korelasi kesetimbangan uap-cair dan cair-cair sistem etanol (1) + air (2) + ionic liquids (3) dalam pemurnian bioetanol

DOI
https://doi.org/10.22146/jrekpros.5017
Telah diserahkan
November 15, 2023
Diterbitkan
Juni 30, 2014

Abstrak

Bioetanol merupakan sumber energi terbarukan yang menjanjikan sebagai pengganti sumber energi tidak terbarukan seperti minyak bumi. Pada kondisi tekanan atmosferik, etanol memiliki azeotrop dengan air sehingga pemisahan dengan menggunakan distilasi biasa tidak dapat dilakukan. Beberapa proses pemurnian etanol adalah melalui distilasi ekstraktif dan ekstraksi cair-cair dengan menggunakan entrainer berupa senyawa baru yang ramah lingkungan dan dapat digunakan kembali (reuse) yaitu ionic liquids. Penelitian intensif sistem etanol (1) + air (2) + ionic liquids (3) telah dilakukan oleh beberapa peneliti mengenai kesetimbangan uap-cair (VLE), kesetimbangan cair-cair (LLE) yang menghasilkan data kesetimbangan. Penelitian tersebut juga menghasilkan parameter-parameter interaksi yang diperoleh berdasarkan hasil korelasi data kesetimbangan tersebut dengan model Nonrandom two-liquid (NRTL), Electrolyte-nonrandom two-liquid (e-NRTL), Universal quasi-chemical (UNIQUAC), dan persamaan Antoine serta hasil prediksi dengan menggunakan model UNIQUAC Functional-group activity coefficients (UNIFAQ). Model-model dan parameter-parameter interaksi biner termodinamika tersebut dapat digunakan untuk keperluan desain, optimasi, serta kontrol kolom distilasi ekstraktif dan ekstraksi cair-cair dalam proses pemurnian bioetanol. Artikel ini menyajikan review tentang model-model dan parameter-parameter interaksi biner untuk 43 sistem etanol (1) + air (2) + ionic liquids (3) sehingga dapat diketahui model dan parameter termodinamika yang sesuai untuk digunakan. NRTL merupakan model yang paling banyak digunakan untuk mengkorelasi data kesetimbangan pada 40 sistem dan dapat mengkorelasi kesetimbangan uap-cair dan cair-cair dengan baik sesuai dengan karakteristik NRTL yang sesuai untuk sistem polar tekanan rendah. Hal tersebut ditunjukkan dengan nilai root mean square deviation (RMSD) untuk ∆y dan ∆T dan average relative deviation (ARD) yang kecil serta dapat mem-fitting grafik data kesetimbangan tersebut dengan baik.

Referensi

  1. Abrams, D., S., and Prausnitz, J.M. (1975), Statistical Thermodynamics of Liquid Mixtures : A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE J., 21 (1), 116-128.
  2. Calvar, N., Gómez, E.,González, B., Domínguez, A. (2010), Experimental Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Ethyl-3- methylpyridinium Ethylsulfate and the Corresponding Binary Systems at 101.3 kPa : Study of the Effect of Cation, J. Chem. Eng. Data, 55, 2786–2791.
  3. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2006), Vapor-Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3- methylimidazolium Chloride and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 51, 2178–2181.
  4. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2008), Study of the behaviour of the azeotropic mixture ethanol–water with imidazolium-based ionic liquids, Fluid Phase Equilibria, 259, 51–56.
  5. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2008), Vapor–Liquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3- methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa, J. Chem. Eng. Data, 53, 820–825.
  6. Calvar, N., González, B., Gómez, E., and Domínguez, A., (2009), Vapor−Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3- Methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data,54, 1004-1008.
  7. Cardona, C.A., Sanchez, O.J. (2007), Fuel Ethanol Production : Process Design Trends and Integration Opportunities, Bioresour. Technol. 98, 2415–2457.
  8. Chapeaux, A., Simoni, L. D., Ronan., T. S., Stadther, M. A., and Brennecke, J., F, (2008), Extraction of alcohols from water with 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide. Green Chem., 10, 1301-1306.
  9. Chen, C. C., Britt,H. I., Boston,J. F.,dan Evans, L. B. (1982), Local Composition Model for Excess Gibbs Energy of Electrolyte Systems, AIChE J., 28(4), 588.
  10. Chen, C. C., dan Evans, L. B. (1986), A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems, AIChE J., 32(3), 444.
  11. Chowdhury, S. A.,Scott, J.L., dan MacFarlane, D. R. (2008), Ternary mixtures of phosphonium ionicliquids + organic solvents + water. Pure Appl. Chem., 80 (6), 1325–1335.
  12. Ge, Y., Zhang, L., Yuan, X., Geng, W., dan Ji, J. (2008), Selection of ionic liquids as entrainers for separation of (water + ethanol), J. Chem. Thermodyn., 40, 1248-1252.
  13. Geng, W., Zhang, L., Deng, D., Ge, Y., dan Ji, J.(2010), Experimental Measurement and Modeling of Vapor-Liquid Equilibrium for the Ternary System Water+Ethanol+1-Butyl-3- methylimidazolium Chloride, J. Chem. Eng. Data, 55, 1679–1683.
  14. Gmehling, J., Onken,U. (1977), Vapour–liquid Equilibrium Data Collection, vol. 1,DECHEMA, Frankfurt, (part 1), p. 53, and p. 154.
  15. Gmehling, J.; Onken, U.; Rearey-Nies, J. R. (1988), Vapor-Liquid Equilibrium Data Collection, DECHEMA: Frankfurt, Vol. I, Part Ib.
  16. Haynes, W. M., Lide, D. R. (2011),CRC Handbook of Chemistry and Physics, 91st ed.,Internet Version.
  17. Hua, X., dan Qingsong, L. (2012), Isobaric VaporLiquid Equilibria for Ethanol-Water System Containing Ionic Liquids at Atmospheric Pressure. CIESC Journal,63,1678–1683.
  18. Jiang, X. X., Wang, J. F., Li, C. X., Wang, L. M., dan Wang, Z. H. (2007), Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid1-ethyl-3-ethylimidazolium diethylphosphate, J. Chem. Thermodynamics, 39, 841–846.
  19. Jork, C., Seiler, M., Beste, Y., A., dan Arlt, W. (2004), Influence of Ionic Liquids on the Phase Behavior of Aqueous Azeotropic Systems. J. Chem. Eng. Data, 49, 852-857.
  20. Li, Q., Zhu, W., Wang, H., Ran, X., Fu, Y., dan Wang, B., (2012),Isobaric Vapor−Liquid Equilibrium for the Ethanol + Water + 1,3- Dimethylimidazolium Dimethylphosphate System at 101.3 kPa,J. Chem. Eng. Data, 57, 696−700.
  21. Li, X., M., Shen, C., dan Li, C., X., (2012), Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol. J. Chem. Thermodyn., 53, 165-175.
  22. Liu, X., Lei, Z., Wang, T., Li, Q., dan Zhu, J, (2012), Isobaric Vapor−Liquid Equilibrium for the Ethanol + Water +2 Aminoethanol Tetrafluoroborate System at 101.3 kPa, J. Chem. Eng. Data, 57, 3532–3537.
  23. Marsh,K., Deev, A., Wu, A., Tran, E., dan Klamt, A., (2002), Room Temperature Ionic Liquids as Replacement for Conventional : A Review. Korean J. Chem. Eng., 19, 357–362.
  24. Mills, G.A. Ecklund, E.E. (2010), Alcohols as Components of Transportation fuels, Ann. Rev. Energy, 12, 47–80.
  25. Mock, B., Evan, L. B.,danChen, C., -C. (1986),Thermodynamic Representation of Phase Equilibria of Mixed-Solvent Electrolyte Systems, AlChE J., 32 (10),1655-1664.
  26. Mokhtarani, B., dan Gmehling, J. (2010), (Vapour + liquid) equilibria of ternary systems with ionic liquids using headspace gas chromatography, J. Chem. Thermodyn., 42, 1036–1038.
  27. Neves,C. M. S. S., Granjo, J. F. O., Freire, M. G., Al Robertson, Olivera, N. M. C., dan Coutinho, J. A. P.(2011), Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids, Green Chem, 13, 1517-1526.
  28. Orchilles, A. V., Miguel, P. J., Vercher, E., Martı´nezAndreu. A. (2007). Isobaric vapor-liquid equilibria for ethyl acetate+ethanol+1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa.J. Chem.Eng. Data, 52, 2325–2330.
  29. Orchilles, A. V.; Miguel, P. J.; Vercher, E.; Martı´nezAndreu, A., (2008) ,Isobaric vapor-liquid equilibria for 1-propanol+water+1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa, J. Chem.Eng. Data, 53, 2426–2431.
  30. Orchilles, A.V., Miguel, P. J., Vercher, E., MartinezAndreu, A. (2010),Using 1-Ethyl-3- methylimidazoliumTrifluoromethanesulfonate as an Entrainer for the Extractive Distillation of Ethanol + Water Mixtures, J. Chem. Eng. Data, 55, 1669–1674.
  31. Pereiro, A.B., Araujo, J. M. M., Esperanca, J. M. S. S., Marrucho, I. M., dan Rebelo, L. P. N., (2012), Impact of Self-Aggregation on The Formation of Ionic-Liquids-Based Aqueous Biphasic Systems. J. Chem. Thermodyn., 46, 2–28.
  32. Renon, H. dan Prausnitz, J. M. (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14 (1), 135-144.
  33. Seiler, M., Jork, C.,Kavarnou, A., Arlt, W., dan Hirsch, R., (2004), Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids, AIChE J., 50, 2439–2454.
  34. Shen, C., Li, X., M., Lu., Y., Z., dan Li, C., X., (2011), Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water + ethanol} mixture. J. Chem. Thermodyn., 43, 1748-1753
  35. Song,Y., dan Chen, C. C.(2009), Symmetric electrolyte nonrandom two-liquid activity coefficient model, Ind. Eng. Chem. Res.,48 (16), 7788–7797.
  36. Swatloski, R. P., Visser, A. E., Reichert,W. M., Broker,G. A., Farina,L. M., Holbrey, J. D., dan Rogers, R. D. (2002), On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chemistry, 4, 81–87.
  37. Taha, M., Teng, H. L., dan Lee, M. J., (2012), The Buffering-Out Effect and Phase Separation in Aqueous Solutions of EPPS Buffer with 1- Propanol, 2-Propanol, or 2-Methyl-2-Propanol at T = 298.15 K, J. Chem. Thermodyn., 47, 154-161.
  38. Tang, Y., Huang, H. Chien, I. (2003), Design of a Complete Ethyl Acetate Reactive Distillation System, J Chem. Eng. Jpn. 36, 1352–1363.
  39. Wang, J. F., Li, C. X., Wang, Z. H., Li, Z. J., dan Jiang, Y. B. (2007), Vapor pressure measurement for water, methanol, ethanol,and their binary mixtures in the presence of an ionic liquid1-ethyl3-methylimidazolium dimethylphosphate. Fluid Phase Equilibria, 255, 186–192.
  40. Wang, J. F., Li, X. M., Meng, H., Li, C. X., dan Wang, Z. H. (2009), Boiling temperature measurement for water, methanol, ethanol, and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di-, or triethanolamine at 101.3 kPa. J. Chem. Thermodynamics, 41, 167–170.
  41. Wang, J. P., Chun, X. L., dan Wang, Z. H. (2007), Measurement and Prediction of Vapor Pressure of Binary and Ternary Systems Containing 1-Ethyl-3-methylimidazolium Ethyl Sulfate. J. Chem. Eng. Data, 52, 1307–1312.
  42. Wasserscheid, P., dan Keim, W., (2000), Ionische Flussigkeiten - Neue “Lo-sungen” fur die U ¬bergangsmetallkatalyse. Angew. Chem.,112, 3926-3945.
  43. Zakariya, R. A., Zhao, J., Li, C. X., dan Wang, Z. H. (2005), Determination of Vapor Pressures for Binary and Ternary Mixtures Containing Ionic Liquid 1-propyl-3methylimidazolium Bromide Chin. J. Chem. Eng., 13, 791–795.
  44. Zhang, D., Deng, Y., Li, C., dan Chen, J., (2008), Separation of Ethyl Acetate-Ethanol Azeotropic Mixture Using Hydrophilic Ionic Liquids, Ind. Eng. Chem. Res., 47, 1995–2001.
  45. Zhao, J., Dong, C., C., Li, C., X., dan Meng, H.,dan Wang, Z., H. (2006), Isobaric vapor–liquid equilibria for ethanol–water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria, 242, 147–153.
  46. Zhao, J., Li, C., dan Wang, Z., H. (2006), Vapor Pressure Measurement and Prediction for Ethanol + Methanol and Ethanol + Water Systems Containing Ionic Liquids. J. Chem. Eng. Data, 51, 1755-1760.
  47. Zhao, J., Li, C., X, dan Wang, Z., H. (2006), Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria, 247, 190–198.