Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 2 (2024): Volume 18, Number 2, 2024

Optimization of gembili (Dioscorea esculenta L.) starch partial hydrolysis in maltodextrin production with microwave assist using acetic acid catalyst

DOI
https://doi.org/10.22146/jrekpros.83823
Submitted
September 28, 2024
Published
September 30, 2024

Abstract

The purpose of this study was to determine the optimal conditions for partial hydrolysis of gembili starch in the maltodextrin production. Novelty of this research is the use of acetic acid as a substitute for commonly used acids and microwaves for process efficiency. The process of maltodextrin production includes raw material pretreatment, gelatinization, liquefaction, drying and analysis. Variations in liquefaction time (30, 40, 50 min), microwave power (300, 400, 500 W) and acetic acid concentration (14, 15, 16 %) were used as independent variables. The equivalent dextrose analysis results were 9.389 ± 0.042 to18.980 ± 0.201%, the density analysis results were 1.059416 to 1.107796 g/ml and viscosity analysis results were 0.430554 to 0.974663 cP. This study produces that 96.705% of the total variability in response can be explained in the regression equation. Critical value of this study estimated dextrose equivalent value of maltodextrin produced of 16.636% and the validation of it is 16.254 ± 0,074%.

References

  1. Ahouei, M.H., Pourahmad, R. and Moghari, A.A., 2019, Improvement of physical and sensory properties of whipping cream by replacing sucrose with rebaudioside A, isomalt and maltodextrin, Food Science and Technology (Brazil), Sociedade Brasileira de Ciencia e Tecnologia de Alimentos, SBCTA, 39 (1), 170–175.
  2. Amiza, M.A., Khuzma, D., Liew, P.S., Salma Malihah, M. and Sarbon, N.M., 2019, Effect of heat treatment and enzymatic protein hydrolysis on the degree of hydrolysis and physicochemical properties of edible bird’s nest, Food Res, Rynnye Lyan Resources, 3 (6), 664–677.
  3. Anggoro, D.D., Buchori, L., Djaeni, M., Ratnawati, Retnowati, D.S., Hadiyanto and Shidqi, A., 2021, Optimization on the Hydrolysis Process of Cellulose from Corn Husk to Glucose with Activated Carbon Catalyst Sulfonated, J Phys Conf Ser, Vol. 1858, IOP Publishing Ltd, available at:https://doi.org/10.1088/1742-6596/1858/1/012088.
  4. Arif, A.B., Sasmitaloka, K.S., Winarti, C. and Wahyudiono., 2019, Effect of liquefaction time and enzyme addition on liquid sugar production from sweet sorghum starch by enzymatic hydrolysis, IOP Conf Ser Earth Environ Sci, Vol. 250, Institute of Physics Publishing, pp. 1–7.
  5. Cheng, Z., Li, J., Qiao, D., Wang, L., Zhao, S. and Zhang, B., 2022, Microwave reheating enriches resistant starch in cold-chain cooked rice: A view of structural alterations during digestion, Int J Biol Macromol, Elsevier B.V., 208, 80–87.
  6. Damayanti, A., Triwibowo, B., Megawati, Azhari, M. and Fadriana, S.A., 2021, Optimization of Anthocyanin Extraction from Cockspur Coral (Erythrina Crista-Galli L.) Petals with Microwave-Assisted Extraction (MAE) using Response Surface Methodology, ASEAN Journal of Chemical Engineering, Gadjah Mada University, 21 (2), 143–157.
  7. Feng, W., Ma, S. and Wang, X., 2020, Recent advances in quality deterioration and improvement of starch in frozen dough, Grain & Oil Science and Technology, Elsevier BV, 3 (4), 154–163.
  8. Fera, M. and Masrikhiyah, R., 2019, Ekstraksi Inulin dari Umbi Gembili (Discorea esculenta L) dengan Pelarut Etanol, Jurnal Pangan Dan Gizi, 9 (2), 156–161.
  9. Fu, J., Li, Y., Zhang, Q., Shen, S., Du, X.Y., Wang, H.B. and Gao, W.D., 2016, High-temperature heating and microwave pretreatments: A new light in bamboo’s enzymatic hydrolysis, Thermal Science, Serbian Society of Heat Transfer Engineers, 20 (3), 999–1002.
  10. Gui, Y., Zou, F., Li, J., Tang, J., Guo, L. and Cui, B., 2021, Corn starch modification during endogenous malt amylases: The impact of synergistic hydrolysis time of α-amylase and β-amylase and limit dextrinase, Int J Biol Macromol, Elsevier B.V., 190, 819–826.
  11. Harianja, J.W., Idiawati, N. and Rudiyansyah., 2015, Optimasi Jenis dan Konsentrasi Asam pada Hidrolisis Selulosa dalam Tongkol Jagung, Jurnal Kovalen, 4 (4), 66–71.
  12. Hartati, I., Yulianto, M.E., Paramita, V. and Amalia, R., 2018, Response surface methodology of pressurized liquid water extraction of curcumin from curcuma domestica val, Rasayan Journal of Chemistry, 11 (4), 1564–1571.
  13. Ikeda, S.K., Finzer, J.R.D. and Pereirateixeira., 2022, Industrial Maltodextrin Production and Impacts on Dryer and Product Performance, American Academic Scientific Research Journal for Engineering, ASRJETS, 85 (1), 23–40.
  14. Jiang, K., Wang, W., Ma, Q., Wang, J. and Sun, J., 2023, Microwave-assisted enzymatic hydrolysis as a novel efficient way to prepare porous starch, Carbohydr Polym, Elsevier Ltd, 301, available at:https://doi.org/10.1016/j.carbpol.2022.120306.
  15. Kong, H., Zou, Y., Gu, Z., Li, Z., Jiang, Z., Cheng, L., Hong, Y., et al., 2018, Liquefaction concentration impacts the fine structure of maltodextrin, Ind Crops Prod, Elsevier B.V., 123, 687–697.
  16. Korde, S., Deshmukh, S., Tandekar, S. and Jugade, R., 2021, Implementation of response surface methodology in physi-chemisorption of Indigo carmine dye using modified chitosan composite, Carbohydrate Polymer Technologies and Applications, Elsevier Ltd, 2, available at:https://doi.org/10.1016/j.carpta.2021.100081.
  17. Laga, A., Darmawan, Bastian, F., Muhpidah and Djalal, M., 2020, The effect of liquefaction time and temperature on the quality and anthocyanin content of purple sweet potato maltohemidextrin, IOP Conf Ser Earth Environ Sci, Vol. 575, IOP Publishing Ltd, pp. 1–10.
  18. Laga, A., Syarifuddin, A. and Dirpan, A., 2018, Enzymatic production of maltodextrins derived from sago flour using heat-stable alpha-amylase and pullulanase, IOP Conf Ser Earth Environ Sci, Vol. 157, Institute of Physics Publishing, available at:https://doi.org/10.1088/1755-1315/157/1/012028.
  19. Latifah, E. and Prahardini, P., 2020, Identifikasi dan Deskripsi Tanaman Umbi-Umbian Pengganti Karbohidrat di Kabupaten Trenggalek, Jurnal Penelitian Agronomi, 22 (2), 94–104.
  20. Li, X. and Xu, J., 2017, Effects of the Microwave Power on the Microwave-assisted Esterification, Current Microwave Chemistry, Bentham Science Publishers Ltd., 4 (2), 158–162.
  21. Lourenço, S.C., Moldão-Martins, M. and Alves, V.D., 2019, Antioxidants of natural plant origins: From sources to food industry applications, Molecules, MDPI AG, 24 (22), 1–25.
  22. Lu, H., Zhang, L., Xi, X. and Nie, Z., 2023, Optimization of pulse bi-directional electrolysis in-situ synthesis of tungsten carbide by response surface methodology, Int J Refract Metals Hard Mater, Elsevier Ltd, 111, available at:https://doi.org/10.1016/j.ijrmhm.2022.106063.
  23. Lupo, C., Boulos, S. and Nyström, L., 2020, Influence of partial acid hydrolysis on size, dispersity, monosaccharide composition, and conformation of linearly-branched water-soluble polysaccharides, Molecules, MDPI AG, 25 (13), available at:https://doi.org/10.3390/molecules25132982.
  24. Malla, M.A., Dubey, A., Kumar, A., Yadav, S. and Kumari, S., 2023, Modeling and optimization of chlorpyrifos and glyphosate biodegradation using RSM and ANN: Elucidating their degradation pathways by GC-MS based metabolomics, Ecotoxicol Environ Saf, Academic Press, 252, available at:https://doi.org/10.1016/j.ecoenv.2023.114628.
  25. Marta, H., Tensiska and Riyanti, L., 2017, Karakterisasi Maltodekstrin dari Pati Jagung (Zea mays) Menggunakan Metode Hidrolisis Asam pada Berbagai Konsentrasi, Chimica et Natura Acta, 5 (1), 13–20.
  26. Muhaimin and Sudiono, S., 2017, Kinetic study of hydrolysis of coconut fiber into glucose, AIP Conf Proc, Vol. 1823, American Institute of Physics Inc., available at:https://doi.org/10.1063/1.4978165.
  27. Okada, Y. and Maeda, R., 2021, Effect of Microwave Irradiation on Oximation of Acetylferrocene, Green and Sustainable Chemistry, Scientific Research Publishing, Inc., 11 (01), 1–8.
  28. Pai, D.A., Vangala, V.R., Ng, J.W., Ng, W.K. and Tan, R.B.H., 2015, Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization, J Food Eng, Elsevier Ltd, 161, 68–74.
  29. Paramita, V., Furuta, T. and Yoshii, H., 2012, High-Oil-Load Encapsulation of Medium-Chain Triglycerides and d-Limonene Mixture in Modified Starch by Spray Drying, J Food Sci, 77 (2), E38–E44.
  30. Paramita, V. and Nisa, Q.A.K., 2021, Design of Stirred Tank Reactor for Cellulase Enzyme Rumen Liquid Based Bioethanol Production from Banana Rod, Res Sq, 1–6.
  31. Paramita, V., Wahyuningsih, Yulianto, M.E. and Oktavian, R.D., 2016, Pengaruh Pemanasan Berbasis Gelombang Mikro Dalam Proses Ekstraksi Enzimatis Vanilin Pada Polong Vanila, Prosiding SNST Ke-7, 11–16.
  32. Park, N. and Walsh, M.K., 2019, Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol, Carbohydr Polym, Elsevier Ltd, 226, available at:https://doi.org/10.1016/j.carbpol.2019.115309.
  33. Patel, K., Panchal, N. and Ingle, P., 2019, Review of Extraction Techniques Extraction Methods: Microwave, Ultrasonic, Pressurized Fluid, Soxhlet Extraction, Etc, International Journal of Advanced Research in Chemical Science, ARC Publications Pvt Ltd., 6 (3), 6–21.
  34. Pentury, M.H., Nursyam, H., Harahap, N. and Soemarno., 2013, Karakterisasi Maltodekstrin Dari Pati Hipokotil Mangrove ( Bruguiera gymnorrhiza ) Menggunakan Beberapa Metode Hidrolisis Enzim, Indonesian Green Technology Journal, 2 (1), 53–60.
  35. Perdana, W.W., 2018, Penerapan GMP dan Perencanaan Pelaksanaan HACCP (Hazard Analysis Critical Control Point) Produk Olahan Pangan Tradisional (Mochi), Agroscience (Agsci), 8 (2), 231–267.
  36. Permatasari, R., Annas, M.S. and Ardian, B., 2015, Distribusi Temperatur Pada Microwave menggunakan Metode CFD, Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTT M XIV).
  37. Priatna, M.R., Palit, W.H. and Kurniawan, R., 2021, Effect of Hydrolysis Temperature and Acid Solution Concentration on Hydrolysis Of Hyacinth, Proceedings of the 3rd Faculty of Industrial Technology International Congress, Bandung, Indonesia, pp. 74–82.
  38. Rahmawati, A., Saputri, I., Gunardi, I. and Jember, U., 2020, Kinetics Study of Acid Catalyzed Degradation of Glucose in High-Temperature Liquid Water, Journal of Energy, Mechanical, Material, and Manufacturing Engineering), 5 (2), 21–28.
  39. Raymundo Yáñez-Alarid, Elvira Santos-Santos and Eva F. Lejarazo-Gómez., 2020, Amide Synthesis through Selective Partial Hydrolysis of Nitriles in Alkaline Media, J Chem Chem Eng, David Publishing Company, 14 (2), available at:https://doi.org/10.17265/1934-7375/2020.02.003.
  40. Roat-Malone, R., 2007, BIOINORGANIC CHEMISTRY, 2 nd., A John Wiley & Sons, Inc., New Jersey.
  41. Rokhati, N., Kusworo, T.D., Susanto, H., Widiasa, I.N., Aryanti, N., Adhiartha, A., Fahni, Y., et al., 2020, Preparation of glucosamine by acid hydrolysis of chitin under microwave irradiation, AIP Conf Proc, Vol. 2197, American Institute of Physics Inc., available at:https://doi.org/10.1063/1.5140934.
  42. Rukmini, P. and Santosa, I., 2019, Pemanfaatan Pati Gembili (Dioscorea esculenta) Menjadi Glukosa dengan Metode Hidrolisis Asam menggunakan Katalis HCl, Konversi, 8 (1), 49–58.
  43. Saavedra-Leos, Z., Leyva-Porras, C., Araujo-Díaz, S.B., Toxqui-Terán, A. and Borrás-Enríquez, A.J., 2015, Technological application of maltodextrins according to the degree of polymerization, Molecules, MDPI AG, 20 (12), 21067–21081.
  44. Sabda, M., Wulanningtyas, H.S., Ondikeleuw, M. and Baliadi, Y., 2019, Characterization of Potential Local Gembili (Dioscorea esculenta L) from Papua as Alternative of Staple Food, Buletin Plasma Nutfah, 25 (1), 25–32.
  45. Santosa, H. and Handayani, N.A., 2014, Hidrolisa Enzimatik Pati Tapioka dengan Kombinasi Pemanas Microwave-Water Bath pada Pembuatan Dekstrin, Momentum, 10 (2), 25–29.
  46. Seager, R.J., Acevedo, A.J., Spill, F. and Zaman, M.H., 2018, Solid dissolution in a fluid solvent is characterized by the interplay of surface area-dependent diffusion and physical fragmentation, Sci Rep, Nature Publishing Group, 8 (1), 1–17.
  47. Shi, Y.-C., Eden, J.L., Kasica, J.J. and Jeffcoat, R., 2000, U.S. Pat. 6 054 302.
  48. Sobini, N., Darsiga, S., Kananke, T.C. and Srivijeindran, S., 2022, Characterization of modified palmyrah tuber starch by pre-gelatinization, acid and dextrinization processes and its applicability, Food Chemistry Advances, Elsevier BV, 1, 100143.
  49. Sofyan, H., Marzuki, Marlina and Novrizan, B., 2018, The integration of response surface method in microsoft excel with visual basic application, J Phys Conf Ser, Vol. 1116, Institute of Physics Publishing, pp. 1–9.
  50. Subroto, E., Jeanette, G., Meiyanasari, Y., Luwinsky, I. and Baraddiaz, S., 2020, Review on the Analysis Methods of Starch, Amylose, Amylopectinin Food and Agricultural Products, International Journal of Emerging Trends in Engineering Research, The World Academy of Research in Science and Engineering, 8 (7), 3519–3524.
  51. Sujana, A.P.P. and Sumadiyasa., 2021, Sintesis Carbon Dot Dengan Bahan Dasar Asam Sitrat Menggunakan Metode Pemanasan Secara Berulang di Dalam Oven Microwave Synthesis of Carbon Dot with Citric Acid as a Base Material Using Repeated Heating in a Microwave Oven, Jurnal Buletin Fisika, 22 (1), 29–37.
  52. Sun, Q., Zhu, X., Si, F. and Xiong, L., 2015, Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch, J Food Sci Technol, Springer, 52 (1), 375–382.
  53. Triyono, A., Erwan Andriansyah, R.C., Luthfiyanti, R. and Rahman, T., 2017, Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator, IOP Conf Ser Earth Environ Sci, Vol. 101, Institute of Physics Publishing, available at:https://doi.org/10.1088/1755-1315/101/1/012026.
  54. Vargas-Campos, L., Figueroa-Cárdenas, J. de D., Tochihuitl-Vázquez, D., Ramírez-Bon, R., Yáñez-Limón, J.M. and Pérez-Robles, J.F., 2023, Study of the dextrose equivalent of maltodextrins in electrospinning using an ethanol/water mixture as the electrospinning solvent, Food Hydrocoll, Elsevier B.V., 139, available at:https://doi.org/10.1016/j.foodhyd.2023.108498.
  55. Widodo, R.M., Noviyanto, D. and Rm, F., 2016, The Influence of Variation in Time and HCl Concentration to the Glucose Produced from Kepok Banana, IOP Conf Ser Mater Sci Eng, Vol. 105, Institute of Physics Publishing, available at:https://doi.org/10.1088/1757-899X/105/1/012017.
  56. Xiao, Z., Xia, J., Zhao, Q., Niu, Y. and Zhao, D., 2022, Maltodextrin as wall material for microcapsules: A review, Carbohydr Polym, Elsevier Ltd, 298 (120113), 2–18.
  57. Xie, Y.C., Kang, K., Zheng, C., Lan, L., Song, H., Li, H.L., Kang, J., et al., 2023, Optimised synthesis of stainless steel fibre-entrapped activated carbon composites using response surface methodology, Chem Phys Lett, Elsevier B.V., 815 (140355), 2–9.
  58. Yulianto, M.E., Amalia, R., Wahyuningsih, Sutrisno and Arya Yudanto, Y., 2020, Bioadsorption of Modified Empty Fruit Bunch Palm Oil for Reducing its 3-MCPD Compounds using Response Surface Methodology, E3S Web of Conferences, 202, 1–9.
  59. Yulianto, M.E., Paramita, V., Amalia, R., Wahyuningsih, N. and Dwi Nyamiati, R., 2022, Production of bioactive compounds from ginger (Zingiber officianale) dregs through subcritical water extraction, Mater Today Proc, Elsevier Ltd, 63, S188–S194.
  60. Yulianto, M.E., Yuniastuti, A., Rohdiana, D., Paramita, V., Amalia, R., Hartati, I., Yohana, E., et al., 2022, Optimization of UV-photo fermentation conditions theaflavin from tea leaves (Camellia sinensis) using response surface methodology (RSM) as inhibitor in SARS-CoV-2, available at:https://doi.org/10.1016/j.matpr.2022.02.0312214-7853/Ó.