Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 17 No 1 (2023): Volume 17, Number 1, 2023

Studi awal kestabilan struktur katalis logam transisi periode pertama berbasis HZSM-5

DOI
https://doi.org/10.22146/jrekpros.76449
Submitted
November 21, 2023
Published
June 30, 2023

Abstract

Katalis logam transisi periode pertama (Fe, Co, Ni, Cu, atau Zn) berbasis Hydrogen Zeolite Socony Mobil – 5 (HZSM-5) merupakan katalis yang menjanjikan untuk berbagai macam reaksi. Pada penelitian ini akan dipelajari keperiodikan aktivitas dan kestabilan struktur katalis tersebut pada reaksi cracking anisol. Uji katalitik dilakukan dengan menggunakan reaktor semi alir. Produk dari hasil proses cracking anisol dianalisis menggunakan kromatografi gas-spektra massa (GC-MS), kemudian karakter katalis bekas seperti kristalinitas dan komposisi fasa dianalisis menggunakan X-ray diffraction (XRD), sedangkan luas permukaan dan porositas dianalisis menggunakan surface area analyzer (SAA). Hasil penelitian menunjukkan bahwa tidak nampak kaitan antara sifat periodik unsur dengan aktivitas katalitiknya.  Karakter setiap katalis yang telah digunakan mengalami sedikit perubahan pada komposisi fasanya, terutama katalis Fe/HZSM-5 dan Co/HZSM-5, sedangkan luas permukaan dan porositasnya mengalami penurunan.

References

Arun N, Sharma RV, Dalai AK. 2015. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst designand development. Renewable and Sus- tainable Energy Reviews. 48:240–255. doi:10.1016/j.rser.2 015.03.074.

Balaraju M, Rekha V, Prasad PS, Devi BL, Prasad RB, Lingai- ah N. 2009. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C ca- talysts. Applied Catalysis A: General. 354(1-2):82–87. doi: 10.1016/j.apcata.2008.11.010.

Barzetti T, Selli E, Moscotti D, Forni L. 1996. Pyridine and am- monia as probes for FTIR analysis of solid acid catalysts. Journal of the Chemical Society - Faraday Transactions. 92(8):1401–1407. doi:10.1039/ft9969201401.

El-Hakam SA, Samra SE, El-Dafrawy SM, Ibrahim AA, Salama RS. 2013. Surface Acidity and Catalytic Activity of Sulfa- ted Titania Supported on Mesoporous MCM-41. Interna- tional Journal of Modern Chemistry. 5(1):55–70.

He P, Shan W, Xiao Y, Song H. 2016. Performance of Zn/ZSM-5 for in Situ Catalytic Upgrading of Pyrolysis Bio-oil by Me- thane. Topics in Catalysis. 59(1):86–93. doi:10.1007/s112 44-015-0508-4.

Kay Lup AN, Abnisa F, Daud WMAW, Aroua MK. 2017. A review on reaction mechanisms of metal-catalyzed deoxygena- tion process in bio-oil model compounds. Applied Cata- lysis A: General. 541(May):87–106. doi:10.1016/j.apcata.2 017.05.002.

Nugrahaningtyas KD, Putri MM, Saraswati TE. 2020. Metal phase and electron density of transition metal/HZSM-5. AIP Conference Proceedings. volume 2237. p. 020003. doi: 10.1063/5.0005561.

Nugrahaningtyas KD, Suharbiansah RSR, Rahmawati F. 2018. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole. IOP Conference Series: Materials Science and Engineering. 333:12060. doi:10.1088/1757-899X/333/1/012060.

Otyuskaya D, Thybaut JW, Lødeng R, Marin GB. 2017. Aniso- le Hydrotreatment Kinetics on CoMo Catalyst in the Ab- sence of Sulfur: Experimental Investigation and Model Construction. Energy and Fuels. 31(7):7082–7092. doi: 10.1021/acs.energyfuels.7b00519.

Peters JE, Carpenter JR, Dayton DC. 2015. Anisole and guaia- col hydrodeoxygenation reaction pathways over selected catalysts. Energy and Fuels. 29(2):909–916. doi:10.1021/ef 502551p.

Robinson AM, Hensley JE, Will Medlin J. 2016. Bifunctional Ca- talysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis. 6(8):5026–5043. doi:10.1021/acscatal.6b00923.

Runnebaum RC, Lobo-Lapidus RJ, Nimmanwudipong T, Block DE, Gates BC. 2011a. Conversion of anisole catalyzed by platinum supported on alumina: The re- action network. Energy and Fuels. 25(10):4776–4785. doi:10.1021/ef2010699.

Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC. 2011b. Catalytic Conversion of Anisole : Evidence of Oxygen Removal in Reactions with Hydrogen:817–820. doi:10.1007/s10562-010-0510-1.

Sad ME, Padró CL, Apesteguía CR. 2008. Selective synthesis of p-cresol by methylation of phenol. Applied Catalysis A: General. 342(1-2):40–48. doi:10.1016/j.apcata.2007.12.038.

Silvestre-Albero J, Rodríguez-Reinoso F, Sepúlveda- Escribano A. 2002. Improved metal-support interaction in Pt/CeO2-SiO2 catalysts after zinc addition. Journal of Catalysis. 210(1):127–136. doi:10.1006/jcat.2002.3670.

Thommes M. 2010. Physical adsorption characterization of nanoporous materials. Chemie-Ingenieur-Technik. 82(7):1059–1073. doi:10.1002/cite.201000064.

Trisunaryanti W. 2018. Material Katalis dan Karakternya. 1 edition. Yogyakarta: UGM PRESS.

Tyagi B, Chudasama CD, Jasra RV. 2006. Characterization of surface acidity of an acid montmorillonite activated wi- th hydrothermal, ultrasonic and microwave techniques. Applied Clay Science. 31(1-2):16–28. doi:10.1016/j.clay.200 5.07.001.

Vichaphund S, Aht-Ong D, Sricharoenchaikul V, Atong D. 2015. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy. 79(1):28–37. doi:10.1016/j.renene.2 014.10.013.

Viljava TR. 2001. From biomass to fuels: Hydrotreating of oxygen-containingfeeds on a CoMo/Al2O3 hydrodesulfu- ration catalist. 11.

Xu Y, Liu J, Ma G, Wang J, Lin J, Wang H, Zhang C, Ding M. 2018. Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas. Fuel. 228(January):1–9. doi:10.1016/j.fuel.2018.04.151.

Zhang L, Cai QJ, Wang SR. 2014. Co-Cracking of Bio-Oil Model Compound Mixture and Ethanol with Different Blending Ratios for Bio-Gasoline Production. Advanced Materials Research. 986-987:30–33. doi:10.4028/www.scientific.n et/AMR.986-987.30.