Ester compounds are widely used as solvents, artificial aroma materials, and precursors of pharmaceutical ingredients. One of the ester compounds widely used in the chemical industry is amyl acetate. Amyl acetate can be synthesized by esterification of amyl alcohol and acetic acid, which is a liquid-liquid heterogeneous reaction. This study aims to study the kinetics of this particular reaction focusing on the effect of temperature. The catalyst used in this study was sulfuric acid. The mole ratio of acetic acid to amyl alcohol used was 2: 5. Reaction was run at constant temperature in a three-neck flask as a batch reactor. The acetic acid and sulfuric acid were first put into the reactor and heated while stirring. After reaching a certain temperature, the preheated amyl alcohol was added into the reactor. During reaction, the temperature was maintained at the desired temperature. The reactants and products involved in this reaction were immiscible. The product phases were separated and then the remaining acetic acid content in the water-soluble phase was analyzed by volumetric method. The study was carried out in 4 variations of temperature i.e. 70, 80, 90, and 100 oC. The results of experimental data analysis showed that the reaction will be faster when the temperature is higher. The mass transfer from the acetic acid phase to the amyl alcohol phase increased with the increase of temperature. The value of the reaction rate constant, the overall mass transfer coefficient, and the Henry’s constant were evaluated by the parameter fitting method using the MATLAB program. Based on the evaluation at the highest reaction temperature 100 oC, the rate constant was 0.0134 mL.mole-2s-1, the mass transfer coefficient was 0.3180 L s-1, and the Henry’s constant was 0.0174 (mole/L)A in phase II/(mole/L)A in phase I.