Jurnal Nasional Teknik Elektro dan Teknologi Informasi https://dev.journal.ugm.ac.id/v3/JNTETI <p><strong><img style="display: block; margin-left: auto; margin-right: auto;" src="/v3/public/site/images/khanifan/HEADER_JNTETI_2020_1200x180_Background_baru_tanpa_list1.jpg" width="600" height="90" align="center"></strong></p> <p><strong>Jurnal Nasional Teknik Elekto dan Teknologi Informasi</strong>&nbsp;is an international journal accommodating research results in electrical engineering and information technology fields.<br><br><strong>Topics cover the fields of:</strong></p> <ul> <li class="show">Information technology: Software Engineering, Knowledge and Data Mining, Multimedia Technologies, Mobile Computing, Parallel/Distributed Computing, Data Communication and Networking, Computer Graphics, Virtual Reality, Data and Cyber Security.</li> <li class="show">Power Systems: Power Generation, Power Distribution, Power Conversion, Protection Systems, Electrical Material.</li> <li class="show">Signal, System and Electronics: Digital Signal Processing Algorithm, Robotic Systems, Image Processing, Biomedical Engineering, Microelectronics, Instrumentation and Control, Artificial Intelligence, Digital and Analog Circuit Design.</li> <li class="show">Communication System: Management and Protocol Network, Telecommunication Systems, Antenna, Radar, High Frequency and Microwave Engineering, Wireless Communications, Optoelectronics, Fuzzy Sensor and Network, Internet of Things.</li> </ul> <p><strong>Jurnal Nasional Teknik Elekto dan Teknologi Informasi is published four times a year: February, May, August, and November.<br></strong><strong><br>Jurnal Nasional Teknik Elektro dan Teknologi Informasi has been accredited by Directorate General of Higher Education, Ministry of Education and Culture, Republic of Indonesia, </strong>Number 28/E/KPT/2019 of September 26, 2019 (<strong>Sinta 2</strong>),&nbsp;<strong>Vol. 8 No. 2 Year 2019 up to Vol. 12 No. 2 Year 2023<br></strong><strong><br>Publisher<br></strong>Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada<br>Jl. Grafika No 2. Kampus UGM Yogyakarta 55281<br>Website&nbsp; :&nbsp;&nbsp;<a href="https://jurnal.ugm.ac.id/v3/JNTETI">https://jurnal.ugm.ac.id/v3/JNTETI</a><br>Email&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; :&nbsp;&nbsp; jnteti@ugm.ac.id<br>Telephone&nbsp;&nbsp; :&nbsp; +62 274 552305</p> Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada en-US Jurnal Nasional Teknik Elektro dan Teknologi Informasi 2301-4156 <p style="text-align: justify;">© <span style="font-weight: 400;">Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the</span><a href="https://creativecommons.org/licenses/by-sa/4.0/"> <span style="font-weight: 400;">Creative Commons Attribution-ShareAlike 4.0 International License</span></a><span style="font-weight: 400;">.</span></p> The Exploration of Student Emotion Experience and Learning Experience in E-learning Platform https://dev.journal.ugm.ac.id/v3/JNTETI/article/view/10808 <p>Previous studies have shown that emotion is crucial in student learning. However, most studies in the e-learning environment have yet to consider emotion as part of learning that could lead to successful learning. Thus, this study explored the relationship between student emotion state, emotion sequences, and student learning experience. A preliminary data collection was conducted to explore the relationship between emotional experience and student learning experience, which involved 16 students. Students were asked to learn a programming subject in an e-learning environment. E-learning is designed to store the students' emotional experience and activity during learning. The sequential pattern mining technique was used to extract the data, exploratory data analysis was conducted to visualize the emotional trajectory during the learning process, and regression analysis was used to explain the relationship between students' emotional learning experiences. The results showed that emotional experience might affect student experience in learning. In one-sequence emotion, all emotion states contributed to the learning experience with p-values &lt; 0.01 except for neutral and disgust with p-values &lt; 0.05. The one-sequence emotion model shows R-squared = 0.585; Adj. R-squared = 0.734; F-statistic = 6.920; Prob (F-statistic) = 0.00702. Meanwhile, in two-sequence emotion, none of the emotion sequences contributed to the student learning experience. Lastly, three-sequence emotion models also showed that most sequences did not influence student learning experience. The only sequence of emotions that influenced the student learning experience was surprise-neutral-surprise. These results suggest that emotion should be considered in learning design as it can influence student experience.</p> Fitra Bachtiar Riza Setiawan Soetedjo Joseph Ananda Sugihdarma Retno Indah Rokhmawati Lailil Muflikhah Copyright (c) 2024-11-21 2024-11-21 13 4 239 245 10.22146/jnteti.v13i4.10808 Optimizing Solar Panel Efficiency: Integration of Dual Axis Solar Tracking and Reflectors https://dev.journal.ugm.ac.id/v3/JNTETI/article/view/12765 <p>Solar panels have relatively low efficiency, but their performance can be enhanced by a tracking system directing the panels perpendicular to the light source and adding reflectors to capture more sunlight. The dual-axis solar tracking method, using two linear actuators and optimized by fuzzy logic, efficiently positions solar panels for maximum sunlight exposure. This research aimed to improve the overall efficiency of solar panels by integrating reflectors with a dual-axis solar tracking system optimized by fuzzy logic. Specifically, this research tested various reflectors to determine the most significant efficiency improvement. This research consisted of two tests: a tracking test and a reflector test using a halogen lamp. The tracking test was conducted by positioning the light in four different positions. The light sensor data were obtained before and after the solar tracking, indicating that the tracking was successful. All these tests were conducted with the light source radiation of 1,168 W/m2. This research concluded that the tracking system effectively positioned the solar panels toward the light source, with the tracking time ranging from 12 to 16 s, depending on the position. Aluminum foil is the most cost-effective reflector, priced at IDR5,341 per 1% increase in efficiency, compared to mirrors at IDR20,204 per 1% and reflective tape at IDR48,034 per 1%. In conclusion, the integration of aluminum foil reflectors and a dual-axis solar tracking system, optimized by fuzzy logic, significantly improves the efficiency of solar panels, which is both cost-effective and efficient.</p> Alvin Rinaldi Wiharja Levin Halim Faisal Wahab Copyright (c) 2024-11-21 2024-11-21 13 4 246 251 10.22146/jnteti.v13i4.12765