Impact Analysis of NZE Scenarios on National Energy Supply Using LEAP

  • Widhiatmaka Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Joko Santosa Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Nona Niode Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Nurry Widya Hesty Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Afri Dwijatmiko Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Prima Trie Wijaya Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Agus Nurrohim Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Arif Darmawan Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
  • Erwin Siregar Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Tangerang Selatan, Banten 15314, Indonesia
Keywords: Energy Supply, Net Zero Emissions, Low Emission Analysis Platform, New Renewable Energy

Abstract

The achievement of the national energy supply target based on new and renewable energy (NRE) by 2025, as stated in the National Energy Policy, is still far below expectations. This shortfall is due to the continued fossil energy dominance in all sectors. To achieve net zero emission (NZE) targets by 2060, systematic and consistent transitions from fossil fuels to NRE are essential. The fossil energy utilization (domestic and imported) is expected to decline, while the substitution with NRE will increase. This study aimed to provide a forecast analysis of national energy supply and utilization across various sectors, including household, industry, power generation, transportation, and commercial sectors, until 2060. The analysis used energy modeling simulations with business as usual (BAU) and NZE scenarios, conducted using the Low Emission Analysis Platform (LEAP) software. LEAP is an integrated, scenario-based energy model used to determine energy demand, production, and resource extraction across all economic sectors. The simulation results for the NZE scenario indicate significant reductions in fossil energy usage across all sectors compared to the BAU scenario, with an increase in NRE utilization, especially in the power generation sector. By 2060, domestic coal, natural gas, fuel oil, and liquefied petroleum gas supplies are projected to decrease by 81%, 74%, 87%, and 84%, respectively; meanwhile, the demand for petroleum remains unchanged. Overall, the supply of NRE under the NZE scenario is expected to grow by an average of 9% per year from 2019 to 2060, amounting to 2.3 times the supply in the BAU scenario.

References

V.S. Husada and I.E. Joesoef, “Legal policy of the Indonesian government to achieve net zero emissions,” J. Res. Soc. Sci. Econ. Manag., vol. 2, no. 1, pp. 128–133, Aug. 2022, doi: 10.59141/jrssem.v2i1.248.

N. Shofiyana, I. Supriyadi, and M.U.A. Qarni, “Transisi energi Indonesia pasca pandemi COVID-19 dan konflik militer Rusia-Ukraina,” J. Kewarganegaraan, vol. 6, no. 2, pp. 3381–3387, Sep. 2022.

M.Z. Jacobson et al., “100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world,” Joule, vol. 1, no. 1, pp. 108–121, Sep. 2017, doi: 10.1016/j.joule.2017.07.005.

L. Suganthi and A.A. Samuel, “Energy models for demand forecasting—A review,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223–1240, Feb. 2012, doi: 10.1016/j.rser.2011.08.014.

P. Misila, P. Winyuchakrit, and B. Limmeechokchai, “Thailand’s long-term GHG emission reduction in 2050: The achievement of renewable energy and energy efficiency beyond the NDC,” Heliyon, vol. 6, no. 12, pp. 1–17, Dec. 2020, doi: 10.1016/j.heliyon.2020.e05720.

M. Shahid et al., “LEAP simulated economic evaluation of sustainable scenarios to fulfill the regional electricity demand in Pakistan,” Sustain. Energy Technol. Assess., vol. 46, pp. 1–13, Aug. 2021, doi: 10.1016/j.seta.2021.101292.

M. Azam et al., “Energy consumption and emission projection for the road transport sector in Malaysia: An application of the LEAP model,” Environ. Dev. Sustain., vol. 18, no. 4, pp. 1027–1047, Aug. 2016, doi: 10.1007/s10668-015-9684-4.

J.D. Correa-Laguna, M. Pelgrims, M.E. Valderrama, and R. Morales, “Colombia’s GHG emissions reduction scenario: Complete representation of the energy and non-energy sectors in LEAP,” Energies, vol. 14, no. 21, pp. 1–24, Nov. 2021, doi: 10.3390/en14217078.

V. Sessa, R. Bhandari, and A. Ba, “Rural electrification pathways: An implementation of LEAP and GIS tools in Mali,” Energies, vol. 14, no. 11, pp. 1–19, Jun. 2021, doi: 10.3390/en14113338.

D. Yang et al., “Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling,” Renew. Sustain. Energy Rev., vol. 135, pp. 1–12, Jan. 2021, doi: 10.1016/j.rser.2020.110116.

J.H. Hong et al., “Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system,” Energy Policy, vol. 127, pp. 425–437, Apr. 2019, doi: 10.1016/j.enpol.2018.11.055.

D.J. Massaga, G. Kirkil, and E. Celebi, “A Comparative study of energy models for Turkish electricity market using LEAP,” in 2019 16th Int. Conf. Eur. Energy Mark. (EEM), 2019, pp. 1–4, doi: 10.1109/EEM.2019.8916283.

K. Handayani, Y. Krozer, and T. Filatova, “From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning,” Energy Policy, vol. 127, pp. 134–146, Apr. 2019, doi: 10.1016/j.enpol.2018.11.045.

D.S. Nurwahyudin, N. Trihastuti, and N.A. Utama, “Energy planning in West Java using software LEAP (long-range energy alternatives planning),” in 7th Int. Conf. Energy Environ. Epidemiol. Inf. Syst. (ICENIS 2022), 2022, pp. 1–18, doi: 10.1051/e3sconf/202235901001.

L. Sani, D. Khatiwada, F. Harahap, and S. Silveira, “Decarbonization pathways for the power sector in Sumatra, Indonesia,” Renew. Sustain. Energy Rev., vol. 150, pp. 1–11, Oct. 2021, doi: 10.1016/j.rser.2021.111507.

“Handbook of Energy & Economic Statistics of Indonesia 2021,” Ministry of Energy and Mineral Resources Republic of Indonesia, 2022.

“Proyeksi Penduduk Indonesia 2015-2045 Hasil SUPAS 2015,” Statistics Indonesia, 2018.

BPS-Statistics Indonesia, “Berita Resmi Statistik 2023 No. 15/02/Th. XXV, no. 6 Februari 2023,” 2023, [Online], https://www.bps.go.id/id/pressrelease/2023/02/06/1997/ekonomi-indonesia-tahun-2022-tumbuh-5-31-persen.html, access date: 1-Mar-2023.

A. Sugiyono, J. Santosa, Adiarso, and E. Hilmawan, “Pemodelan dampak COVID-19 terhadap kebutuhan energi di Indonesia,” J. Sist. Cerdas, vol. 3, no. 2, pp. 65–73, Aug. 2020, doi: 10.37396/jsc.v3i2.65.

Stockholm Environment Institute, LEAP: The Low Emissions Analysis Platform. [Software version: 2020.1.76]. Somerville, MA, USA: Stockholm Environment Institute, 2022.

B. Ugwoke et al., “Low emissions analysis platform model for renewable energy: Community-scale case studies in Nigeria,” Sustain. Cities Soc., vol. 67, Apr. 2021, Art. no. 102750, doi: 10.1016/j.scs.2021.102750.

M. Artzrouni, “Mathematical demography,” Encycl. Soc. Meas., 2005, pp. 641–651, doi: 10.1016/B0-12-369398-5/00360-1.

R.A. Aprilianto and R.M. Ariefianto, “Peluang dan tantangan menuju net zero emission (NZE) menggunakan variable renewable energy (VRE) pada sistem ketenagalistrikan di Indonesia,” J. Paradigma, J. Multidisipliner Mhs. Pascasarj. Indones., vol. 2, no. 2, pp. 1–13, Dec. 2021, doi: 10.22146/jpmmpi.v2i2.70198.

M. Triani and K. Dewi, “Carbon emission reduction and indicative carbon revenue in the coal-fired power plants in Indonesia,” in 8th Int. Conf. Workshop Basic Appl. Sci. (ICOWOBAS), 2021, pp. 1–8, doi: 10.1063/5.0103750.

Bapennas (2023) “Segera bergabung dengan OECD, strategi mewujudkan Indonesia Emas 2045,” [Online], https://www.bappenas.go.id/berita/segera-bergabung-dengan-oecd-strategi-mewujudkan-indonesia-emas-2045-9yHr9, access date: 10-Oct-2023.

N.A. Pambudi et al., “Renewable energy in Indonesia: Current status, potential, and future development,” Sustainability, vol. 15, no. 3, pp. 1–29, Feb. 2023, doi: 10.3390/su15032342.

J.A. Ordonez, M. Fritz, and J. Eckstein, “Coal vs. renewables: Least-cost optimization of the Indonesian power sector,” Energy Sustain. Dev., vol. 68, pp. 350–363, Jun. 2022, doi: 10.1016/j.esd.2022.04.017.

S.P. Kanugrahan, D.F. Hakam, and H. Nugraha, “Techno-economic analysis of Indonesia power generation expansion to achieve economic sustainability and net zero carbon 2050,” Sustainability, vol. 14, no. 15, pp. 1–25, Aug. 2022, doi: 10.3390/su14159038.

I. Utami, M.A. Riski, and D.R. Hartanto, “Nuclear power plants technology to realize net zero emission 2060,” Int. J. Bus. Manag. Technol., vol. 6, no. 1, pp. 158–162, Jan./Feb.2022.

K. Handayani et al., “Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050,” Appl. Energy, vol. 311, pp. 1–19, Apr. 2022, doi: 10.1016/j.apenergy.2022.118580.

Published
2024-08-28
How to Cite
Widhiatmaka, Joko Santosa, Nona Niode, Nurry Widya Hesty, Afri Dwijatmiko, Prima Trie Wijaya, Agus Nurrohim, Arif Darmawan, & Erwin Siregar. (2024). Impact Analysis of NZE Scenarios on National Energy Supply Using LEAP. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 13(3), 222-229. https://doi.org/10.22146/jnteti.v13i3.9012
Section
Articles