Classification of Flood-Prone Areas in Tomohon Using Landsat 8 OLI Satellite Imagery

  • Gabriel Kenisa Meqfaden Baali Satya Wacana Christian University
  • Kristoko Dwi Hartomo Satya Wacana Christian University
  • Sri Yulianto Joko Prasetyo Satya Wacana Christian University
Keywords: Supervised Classification, NDVI, NDWI, SAVI

Abstract

Natural disasters often occur unexpectedly, resulting in both material and nonmaterial losses. Floods are among natural disasters that often occurs in several regions in Indonesia, one of which is Tomohon. Tomohon is a city located in the highlands, so it is expected to have a low flood risk level. Nevertheless, in reality, flood still occurs in Tomohon, which then causes material and nonmaterial losses. The data used in this research were the satellite imagery of the Landsat 8 onboard operational land imager (OLI) accessed through the United States Geographical Survey (USGS). The land covers in Tomohon were classified using the supervised classification method with the minimum distance classification (MDC) algorithm. This method provided the advantage of classifying land covers by utilizing training data in Tomohon, achieving an accuracy rate of 99.56%. In addition, the calculations of normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and soil adjusted vegetation index (SAVI) were also utilized to determine the level of vegetation and surface soil moisture in Tomohon using the Quantum GIS (QGIS) application. Upon examining the land covers and calculating the index, weighting was once more performed in accordance with criteria. It was done to facilitate the classification of the area into three flood risk classifications: high, medium, and low. The results showed that green spaces in Tomohon are still greater than residential areas. However, NDVI, NDWI, and SAVI calculations indicated that some densely populated areas are susceptible to flood. These areas include Tomohon Selatan and Tomohon Tengah Subdistricts, which have a high level of flood risk and the Tomohon Timur Subdistrict, which has a medium level of flood risk.

References

M.I. Kurnia, G.Z. Mulki, and H. Firdaus, “Pemetaan Rawan Banjir di Kecamatan Pontianak Selatan dan Pontianak Tenggara Berbasis Sistem Informasi Geografis (SIG),” J. PWK Laut Sipil Tambang, Vol. 6, No. 2, pp. 1–7, Jun. 2019, doi: 10.26418/jelast.v6i2.34343.

A. Hardianto et al., “Pemanfaatan Citra Landsat 8 dalam Mengidentifikasi Nilai Indeks Kerapatan Vegetasi (NDVI) Tahun 2013 dan 2019 (Area Studi : Kota Bandar Lampung),” J. Geosci. Remote Sens., Vol. 2, No. 1, pp. 8–15, May 2021, doi: 10.23960/jgrs.2021.v2i1.38.

“Geografis,” [Online], https://tomohon.go.id/geografis/, access date: 20-Mar-2022.

Y. Ikanubun (2017) “Tomohon Berada di Pegunungan, Kok Bisa Banjir Bandang?” [Online], https://www.liputan6.com/regional/read/2863910/tomohon-berada-di-pegunungan-kok-bisa-banjir-bandang, access date: 01-Apr-2022.

Redaksi KM (2022) “Banjir Landa Tomohon, 52 Rumah Warga dan Satu Gereja Terdampak,” [Online], https://kanalmetro.com/2022/03/12/banjir-landa-tomohon-52-rumah-warga-dan-satu-gereja-terdampak, access date: 01-Apr-2022.

“Rekapitulasi dan Grafik Kejadian/Penanganan Bencana di Kota Tomohon,” Regional Agency for Disaster Management of Tomohon, 2022.

P. Rahmaini and A.W. Abdi, “Penggunaan SIG untuk Memetakan Kawasan Rawan Banjir di Kabupaten Pidie Jaya,” J. Pendidik. Geosfer., Vol. 6, No. 2, pp. 77–89, Dec. 2021, doi: 10.24815/jpg.v6i2.22137.

M. Lestari, M. Mira, S.Y.J. Prasetyo, and C. Fibriani, “Analisis Daerah Rawan Banjir pada Daerah Aliran Sungai Tuntang Menggunakan Skoring dan Inverse Distance Weighted,” Indones. J. Comput., Model., Vol. 4, No. 1, pp. 1–9, Jan. 2021, doi: 10.24246/icm.v4i1.4615.

R.M. Derajat et al., “Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (OLI) di Kecamatan Pangandaran,” J. Kaji. Ilmu, Pendidik. Geogr., Vol. 3, No. 1, pp. 1–10, Jan. 2020, doi: 10.33059/jsg.v3i1.1985.

B. Laurensz, F. Lawalata, and S.Y.J. Prasetyo, “Potensi Resiko Banjir dengan Menggunakan Citra Satelit (Studi Kasus: Kota Manado, Provinsi Sulawesi Utara),” Indones. J. Comput., Model., Vol. 2, No. 1, pp. 17–24, Jan. 2019.

A. Erlansari, B. Susilo, and F. Hernoza, “Optimalisasi Data Landsat 8 untuk Pemetaan Daerah Rawan Banjir dengan NDVI dan NDWI (Studi Kasus: Kota Bengkulu),” J. Geofis. Eksplor., Vol. 6, No. 1, pp. 57–65, Mar. 2020, doi: 10.23960/jge.v6i1.60.

N. Nuryanti, J.L. Tanesib, and A. Warsito, “Pemetaan Daerah Rawan Banjir dengan Penginderaan Kupang Timur Kabupaten Kupang Provinsi Nusa Tenggara Timur,” J. Fis. Fis. Sains, Apl., Vol. 3, No. 1, pp. 73–79, 2018, doi: 10.35508/fisa.v3i1.604.

A.H. Pattiraja, “Analisis Potensi Kawasan Rawan Banjir Kota Kepanjen Menggunakan Sistem Informasi Geografis (SIG),” J. Planoearth, Vol. 3, No. 1, pp. 1–6, Feb. 2018, doi: 10.31764/jpe.v3i1.212.

E.H. Purwanto and R. Lukiawan, “Parameter Teknis dalam Usulan Standar Pengolahan Penginderaan Jauh: Metode Klasifikasi Terbimbing,” J. Stand., Vol. 21, No. 1, pp. 67–78, Mar. 2019, doi: 10.31153/js.v21i1.737.

R. Septiani, I.P.A. Citra, and A.S.A. Nugraha, “Perbandingan Metode Supervised Classification dan Unsupervised Classification terhadap Penutup Lahan di Kabupaten Buleleng,” J. Geografi, Vol. 16, No. 2, pp. 90–96, Dec. 2019, doi: 10.15294/jg.v16i2.19777.

D. Afasel, R. Purnamasari, and Edwar, “Klasifikasi Tutupan Lahan Menggunakan Supervised Machine Learning pada Citra Satelit Menggunakan Google Earth Engine,” e-Proc. Eng., Vol. 8, No. 6, pp. 3278–3287, Dec. 2022.

W.D. Hudson, “Digital Classification of Landsat Multispectral Scanner Data – An Introduction,” Mich. State Univ. Agric. Exp. Stn., East Lansing, AS, 1987.

R. Yudistira, A.I. Meha, and S.Y.J. Prasetyo, “Perubahan Konversi Lahan Menggunakan NDVI, EVI, SAVI dan PCA pada Citra Landsat 8 (Studi Kasus: Kota Salatiga),” Indones. J. Comput., Model., Vol. 2, No. 1, pp. 25–30, Jan. 2019.

N. Simarmata et al., “Analisis Transformasi Indeks NDVI, NDWI dan SAVI Untuk Identifikasi Kerapatan Vegetasi Mangrove Menggunakan Citra Sentinel Di Pesisir Timur Provinsi Lampung,” J. Geografi Geografi, Pengajarannya, Vol. 19, No. 2, pp. 69–79, Dec. 2021, doi: 10.26740/jggp.v19n2.p69-79.

B.E. Cahyono, E. Ikke, S. Putri, and A.T. Nugroho, “Flooded Area Mapping and Its Relationship to the Land Use, Soil Type, and Rainfall in North Konawe Regency,” J. Ilm. Dasar, Vol. 23, No. 2, pp. 93–100, Jul. 2022, doi: 10.19184/jid.v23i2.23898.

Published
2023-11-29
How to Cite
Gabriel Kenisa Meqfaden Baali, Kristoko Dwi Hartomo, & Sri Yulianto Joko Prasetyo. (2023). Classification of Flood-Prone Areas in Tomohon Using Landsat 8 OLI Satellite Imagery. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 12(4), 313-319. https://doi.org/10.22146/jnteti.v12i4.7396
Section
Articles