Ultrasound Probe Calibration Method of Single-Wire Phantom Using Levenberg-Marquardt Algorithm

  • Tri Arief Sardjono Institut Teknologi Sepuluh Nopember
  • Eko Mulyanto Yuniarno Institut Teknologi Sepuluh Nopember
  • I Made Gede Sunarya Universitas Pendidikan Ganesha
  • I Ketut Eddy Purnama Institut Teknologi Sepuluh Nopember
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember
  • Norma Hermawan Institut Teknologi Sepuluh Nopember
Keywords: Single-Wire Object, 2D Ultrasound Probe, Tracking System, Levenberg-Marquardt Algorithm (LMA), Freehand, Best Fit Optimization

Abstract

A freehand three-dimensional (3D) ultrasound system is a method of acquiring images using a 3D ultrasound probe or conventional two-dimensional (2D) ultrasound probe to give a 3D visualization of an object inside the body. Ultrasounds are used extensively in clinical applications since they are advantageous in that they do not bring dangerous radiation effects and have a low cost. However, a probe calibration method is needed to transform the coordinate position into a 3D visualization display, especially for image-guided intervention. The current ultrasound probe calibration system usually uses the numerical regression method for the N-wire phantom, which has problems in accuracy and reliability due to nonlinear point scattered ultrasound image data. Hence, a method for ultrasound probe positional calibration of single-wire phantom using the Levenberg-Marquardt algorithm (LMA) was proposed to overcome this weakness. This experiment consisted of an optical tracking system setup, a 2D ultrasound probe with marker, an ultrasound machine, and a single-wire object in a water container equipped with a marker. The position and orientation of the marker in a 2D ultrasound probe and the marker in the water container were tracked using the optical tracking system. A 2D ultrasound probe was equipped with a marker connected wirelessly using an optical tracking system to capture the single-wire object. The resulting sequences of 2D ultrasound images were reconstructed and visualized into 3D ultrasound images using three transformations, ultrasound beam to ultrasound probe’s marker, single-wire phantom position to container’s marker, and the 3D visualization transformation. The LMA was used to determine the best optimization parameters for determining the exact position and representing that 3D visualization. The experiment result showed that the lowest mean square error (MSE), rotation error, and translation error were 0.45 mm, 0.25°, and 0.3828 mm, respectively.

References

S. Allsop, S. Gandhi, N. Ridley, and M. Spear, “Implementing Ultrasound Sessions to Highlight Living Anatomy for Large Medical Student Cohorts,” Transl. Res. Anat., Vol. 22, pp. 1–7, Jan. 2021, doi: 10.1016/j.tria.2020.100088.

J. Peng et al., “Miniaturized High-Resolution Integrated 360° Electronic Radial Ultrasound Endoscope for Digestive Tract Imaging,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, Vol. 66, No. 5, pp. 975–983, May 2019, doi: 10.1109/TUFFC.2019.2903308.

S. Dastmalchian, H. Aryafar, and S. Tavri, “Intravascular Ultrasound Guidance for TIPS Procedures: A Review,” AJR Amer. J. Roentgenol, Vol. 219, No. 4, pp. 634–646, Oct. 2022, doi: 10.2214/AJR.22.27626.

J. Peng et al., “A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging,” IEEE Trans. Biomed. Eng., Vol. 66, No. 3, pp. 802–809, Mar. 2019, doi: 10.1109/TBME.2018.2856930.

B. He, “Focused Ultrasound Help Realize High Spatiotemporal Brain Imaging? - A Concept on Acousto-Electrophysiological Neuroimaging,” IEEE Trans. Biomed. Eng., Vol. 63, No. 12, pp. 2654–2656, Dec. 2016, doi: 10.1109/TBME.2016.2620983.

S. Fekkes et al., “Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, Vol. 65, No. 7, pp. 1166–1181, Jul. 2018, doi: 10.1109/TUFFC.2018.2834724.

Y. Wang et al., “Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound,” IEEE Trans. Med. Imaging, Vol. 38, No. 12, pp. 2768–2778, Dec. 2019, doi: 10.1109/TMI.2019.2913184.

L. Wang and Z. Xuan, “Study on 3D Ultrasound Imaging Technology for Measuring Bladder Tumour Health Care and Information Sensing,” Meas., Vol. 163, pp. 1–8, Oct. 2020, doi: 10.1016/j.measurement.2020.107926.

C. Zhao et al., “Role of Contrast-Enhanced Ultrasound Sonography in the Medical Diagnostics of the Disease Activity in Patients with Takayasu Arteritis,” IEEE Access, Vol. 7, pp. 23240–23248, Jan. 2019, doi: 10.1109/ACCESS.2019.2896386.

G.A.G.M. Hendriks, C. Chen, H.H.G. Hansen, and C.L. de Korte, “3-D Single Breath-Hold Shear Strain Estimation for Improved Breast Lesion Detection and Classification in Automated Volumetric Ultrasound Scanners,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, Vol. 65, No. 9, pp. 1590–1599, Sep. 2018, doi: 10.1109/TUFFC.2018.2849687.

M. Marsousi, K. Plataniotis, and S. Stergiopoulos, “Computer-Assisted 3-D Ultrasound Probe Placement for Emergency Healthcare Applications,” IEEE Trans. Ind. Inform., Vol. 12, No. 4, pp. 1380–1391, Aug. 2016, doi: 10.1109/TII.2016.2569522.

S. Holbek et al.,” Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, Vol. 64, No. 3, pp. 544–554, Mar. 2017, doi: 10.1109/TUFFC.2016.2639318

C. Lee, W. Choi, J. Kim, and C. Kim, “Three-Dimensional Clinical Handheld Photoacoustic/Ultrasound Scanner,” Photoacoustics, Vol 18, pp. 1–8, Jun. 2020, doi: 10.1016/j.pacs.2020.100173.

E. Passmore and M. Sangeux, “Defining the Medial-Lateral Axis of an Anatomical Femur Coordinate System Using Freehand 3D Ultrasound Imaging,” Gait, Posture, Vol. 45, pp. 211–216, Mar. 2016, doi: 10.1016/j.gaitpost.2016.02.006.

S. Chung, C. Shih, and C. Huang, “Freehand Three-Dimensional Ultrasound Imaging of Carotid Artery Using Motion Tracking Technology,” Ultrason., Vol. 74, pp. 11–20, Feb. 2017, doi: 10.1016/j.ultras.2016.09.020.

N. Hermawan, T. Ishii, and Y. Saijo, “Color Doppler Shear Wave Elastography Using Commercial Ultrasound Machine with Compensated Transducer Scanning Delay,” J. Med. Ultrason., Vol. 49, No. 2, pp. 163–173, Apr. 2022, doi: 10.1007/s10396-022-01194-7.

B. Mathieu, C. Claire, L. Lorenzo, and V. Arturo, “Temporal and Spatial Calibration of a Freehand 3D Ultrasound Reconstructions System by Using an N-Wire Phantom,” 2015 12th Int. Conf. Elect. Eng. Comput. Sci., Autom. Control (CCE), 2015, pp. 1–7, doi: 10.1109/ICEEE.2015.7357966.

Q. Huang and Z. Zeng, “A Review on Real-Time 3D Ultrasound Imaging Technology,” BioMed Res. Int., Vol. 2017, pp. 1–20, Mar. 2017, doi: 10.1155/2017/6027029.

M.H. Mozaffari and W.S. Lee, “Freehand 3-D Ultrasound Imaging: A Systematic Review,” Ultrasound in Med., Biol., Vol. 43, No. 10, pp. 2099–2124, Oct. 2017, doi: 10.1016/j.ultrasmedbio.2017.06.009.

T.K. Koo and N. Silvia, “Actuator-Assisted Calibration of Freehand 3D Ultrasound System,” J. Healthc. Eng., Vol 2018, pp. 1–11, May 2018, doi: 10.1155/2018/9314626.

C. Shen, L. Lyu, G. Wang, and J. Wu, “A Method for Ultrasound Probe Calibration Based on Arbitrary Wire Phantom,” Cogent Eng., Vol. 6, No. 1, pp. 1–13, Apr. 2019, doi: 10.1080/23311916.2019.1592739.

Q.M. Ghulam, S. Kilaru, S. Ou, and H. Sillesen, “Clinical Validation of Three-Dimensional Ultrasound for Abdominal Aortic Aneurysm,” J. Vasc. Surg., Vol. 71, No. 1, pp. 180–188, Jan. 2020, doi: 10.1016/j.jvs.2019.03.066.

J. Suthakorn, N. Tanaiutchawoot, and C. Wiratkapan, “Ultrasound Calibration with Ladder Phantom at Multiple Depths for Breastbiopsy Navigation System,” Theor. App. Mech. Lett., Vol. 10, No. 5, pp. 343–353, Jul. 2020, doi: 10.1016/j.taml.2020.01.037

Q. Cai et al., “Spatial Calibration for 3D Freehand Ultrasound via Independent General Motions,” 2020 IEEE Int. Ultrason. Symp. (IUS), 2020, pp. 1–3, doi: 10.1109/IUS46767.2020.9251558.

Q. Cai et al., “Quantitative Study on Error Sensitivity in Ultrasound Probe Calibration with Hybrid Tracking,” 2021 IEEE Int. Ultrason. Symp. (IUS), 2021, pp. 1–4, doi: 10.1109/IUS52206.2021.9593708.

Published
2023-08-31
How to Cite
Tri Arief Sardjono, Eko Mulyanto Yuniarno, I Made Gede Sunarya, I Ketut Eddy Purnama, Mauridhi Hery Purnomo, & Norma Hermawan. (2023). Ultrasound Probe Calibration Method of Single-Wire Phantom Using Levenberg-Marquardt Algorithm. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 12(3), 212-218. https://doi.org/10.22146/jnteti.v12i3.6282
Section
Articles