Indonesian Society’s Sentiment Analysis Against the COVID-19 Booster Vaccine

  • Dionisia Bhisetya Rarasati Bunda Mulia University
  • Angelina Pramana Thenata Bunda Mulia University
  • Afiyah Salsabila Arief Bunda Mulia University
Keywords: COVID-19, Booster Vaccine, Sentiment Analysis, Support Vector Machine

Abstract

The COVID-19 pandemic is still occurring in various countries, including Indonesia. This pandemic is caused by the coronavirus, which has mutated into multiple virus variants, such as Delta and Omicron. As of 9 February 2022, 4,626,936 people were confirmed positive for COVID-19 in Indonesia. This number continues to rise. The Indonesian government has prevented the spread of these virus variants by introducing booster vaccines to the public. However, this vaccination program has caused various sentiments among Indonesians. To optimize efforts to combat COVID-19, the government needs to know these sentiments immediately. Based on these problems, the researcher proposes the application of machine learning technology to develop a system that can analyze the sentiments of the Indonesians toward the booster vaccine. This research has several stages: data collection, data labeling, text preprocessing, feature extraction, and application of the support vector machine (SVM) algorithm using various kernels, namely the linear kernel, Gaussian radial basis function (RBF) kernel, and polynomial kernel. Furthermore, the results of the system were tested for accuracy using a 10-fold cross validation and confusion matrix. The dataset used was 681 tweets with the hashtag “vaksinbooster.” The dataset consists of two classes: negative (0) and positive (1). The results showed that the data were positive for the booster vaccine, as evidenced by the higher number of positive tweets, with 554 data, compared to 127 negative tweets. In addition, the dataset was divided into training data of 545 and testing data of 136. In addition, the test results of this study revealed that the SVM algorithm with the polynomial kernel, which was evaluated with 10-fold cross validation, yielded the highest level of accuracy, namely 79.22%.

References

(2022) “Peta Sebaran COVID-19,” [Online], https://covid19.go.id/peta-sebaran#, access date: 14-Mar-2022.

D.A. Agustina, S. Subanti, and E. Zukhronah, “Implementasi Text Mining pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,” Indones. J. Appl. Stat., Vol. 3, No. 2, pp. 109–122, Nov. 2020, doi: 10.13057/ijas.v3i2.44337.

D.B. Rarasati, “A Grouping of Song-Lyric Themes Using K-Means Clustering,” JISA (J. Inform., Sains), Vol. 3, No. 2, pp. 38–41, Dec. 2020, doi: 10.31326/jisa.v3i2.658.

D. Berrar, “Cross-Validation,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1, S. Ranganathan, K. Nakai, C. Schönbach, Eds., Amsterdam, Netherlands: Elsevier, 2019, pp. 542–545, doi: 10.1016/B978-0-12-809633-8.20349-X.

Y. Sari, P.B. Prakoso, and A.R. Baskara, “Road Crack Detection using Support Vector Machine (SVM) and OTSU Algorithm,” 2019 6th Int. Conf. Electr. Veh. Technol. (ICEVT), 2019, pp. 349–354, doi: 10.1109/ICEVT48285.2019.8993969.

B. Haryanto et al., “Facebook Analysis of Community Sentiment on 2019 Indonesian Presidential Candidates From Facebook Opinion Data,” Procedia Comput. Sci., Vol. 161, pp. 715–722, 2019, doi: 10.1016/j.procs.2019.11.175.

M. Syarifuddin, “Analisis Sentimen Opini Publik Mengenai COVID-19 pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” Inti Nusa Mandiri, Vol. 15, No. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.

R. Umar, I. Riadi, and Purwono, “Perbandingan Metode SVM, RF dan SGD untuk Penentuan Model Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial,” J. RESTI (Rekayasa Sist., Teknol. Inf.), Vol. 4, No. 2, pp. 329–335, Apr. 2020, doi: 10.29207/resti.v4i2.1770.

A. Roihan, P.A. Sunarya, and A.S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper,” IJCIT (Indones. J. Comput. Inf. Technol., Vol. 5, No. 1, pp. 75–82, Mei 2020, doi: 10.31294/ijcit.v5i1.7951.

A.P. Thenata, “Text Mining Literature Review on Indonesian Social Media,” J. Eduk., Penelit. Inform., Vol. 7, No. 2, pp. 226–232, Aug. 2021, doi: 10.26418/jp.v7i2.47975.

F.S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” J. RESTI (Rekayasa Sist., Teknol. Inf.), Vol. 1, No. 1, pp. 19–25, Apr. 2017, doi: 10.29207/resti.v1i1.11.

S. Symeonidis, D. Effrosynidis, and A. Arampatzis, “A Comparative Evaluation of Pre-Processing Techniques and Their Interactions for Twitter Sentiment Analysis,” Expert Syst. Appl., Vol. 110, pp. 298–310, Nov. 2018, doi: 10.1016/j.eswa.2018.06.022.

C. Savas and F. Dovis, “The Impact of Different Kernel Functions on the Performance of Scintillation Detection Based on Support Vector Machines,” Sens., Vol. 19, No. 23, pp. 1–16, Nov. 2019, doi: 10.3390/s19235219.

V.Y. Radygin et al., “Application of Text Mining Technologies in Russian language for Solving the Problems of Primary Financial Monitoring for Solving the Problems of Primary Financial Monitoring,” Procedia Comput. Sci., Vol. 190, pp. 678–683, 2021, doi: 10.1016/j.procs.2021.06.078.

H. Najjichah, A. Syukur, and H. Subagyo, “Pengaruh Text Preprocessing dan Kombinasinya pada Peringkas Dokumen Otomatis Teks Berbahasa Indonesia,” J. Teknol. Inf. Cyberku, Vol. 15, No. 1, pp. 1–11, Jan. 2019.

D. Sebastian, “Implementasi Algoritma K-Nearest Neighbor untuk Melakukan Klasifikasi Produk dari Beberapa E-marketplace,” J. Tek. Inform., Sist. Inf., Vol. 5, No. 1, pp. 51–61, Apr. 2019, doi: 10.28932/jutisi.v5i1.1581.

H. Liu, P. Burnap, W. Alorainy, and M. L. Williams, “A Fuzzy Approach to Text Classification with Two-Stage Training for Ambiguous Instances,” IEEE Trans. Comput. Soc. Syst., Vol. 6, No. 2, pp. 227–240, Apr. 2019, doi: 10.1109/TCSS.2019.2892037.

I. Yahav, O. Shehory, and D. Schwartz, “Comments Mining With TF-IDF: The Inherent Bias and Its Removal,” IEEE Trans. Knowl., Data Eng., Vol. 31, No. 3, pp. 437–450, Mar. 2019, doi: 10.1109/TKDE.2018.2840127.

Henderi, W. Tri, and R. Efana, “Comparison of Min-Max Normalization and Z-Score Normalization in the K-Nearest Neighbor (KNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” IJIIS Int. J. Inform., Inf. Syst., Vol. 4, No. 1, pp. 13–20, Mar. 2021, doi: 10.47738/ijiis.v4i1.73.

M.A. Imron and B. Prasetiyo, “Improving Algorithm Accuracy K-Nearest Neighbor Using Z-Score Normalization and Particle Swarm Optimization to Predict Customer Churn,” J. Soft Comput. Explor., Vol. 1, No. 1, pp. 56–62, Sep. 2020, doi: 10.52465/joscex.v1i1.7.

H. Al Azies, D. Trishnanti, and E. Mustikawati P.H, “Comparison of Kernel Support Vector Machine (SVM) in Classification of Human Development Index (HDI),” IPTEK J. Proc. Ser., No. 6, pp. 53–57, Nov. 2019, doi: 10.12962/j23546026.y2019i6.6394.

F. Romadoni, Y. Umaidah, and B.N. Sari, “Text Mining untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sist. Inf., Komput.), Vol. 9, No. 2, pp. 247–253, Jul. 2020, doi: 10.32736/sisfokom.v9i2.903.

H.P.P. Zuriel and A. Fahrurozi, “Implementasi Algoritma Klasifikasi Support Vector Machine untuk Analisa Sentimen Pengguna Twitter Terhadap Kebijakan PABB,” J. Ilm. Inform. Komput., Vol. 26, No. 2, pp. 149–162, Aug. 2021, doi: 10.35760/ik.2021.v26i2.4289.

Published
2023-11-22
How to Cite
Dionisia Bhisetya Rarasati, Angelina Pramana Thenata, & Afiyah Salsabila Arief. (2023). Indonesian Society’s Sentiment Analysis Against the COVID-19 Booster Vaccine . Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 12(4), 274-279. https://doi.org/10.22146/jnteti.v12i4.5125
Section
Articles