Classification of Banana Ripe Level Based on Texture Features and KNN Algorithms
Abstract
Bananas are fruits that are rich in vitamins, minerals, and carbohydrates. Banana trees are often cultivated as they have many benefits. In growing banana trees, it is necessary to consider the ripeness level of bananas since it can determine the quality of bananas when harvested. The ripeness level of bananas is related to marketing reach. If the marketing reach is far, the banana should be harvested when it is still raw. Therefore, a system that can classify bananas’ ripeness levels is needed. In this study, 45 banana images were collected, with a composition of 30 images as training data and 15 images as test data. Afterwards, the texture feature extraction method was utilized to determine the parameters affecting the ripeness level of bananas. The texture feature extraction used was based on a histogram that generated several parameters i.e., average intensity, skewness, energy descriptor, and smoothness in the image. In the subsequent stage, the classification based on the features obtained using KNN algorithm was conducted. Based on the results, it was found that the classification accuracy rate was 88.89%.
References
D.S. Prabha dan J.S. Kumar, “Assessment of Banana Fruit Maturity by Image Processing Technique,” J. Food Sci. Technol., Vol. 52, No. 3, hal. 1316–1327, 2015.
Indarto dan Murinto, “Deteksi Kematangan Buah Pisang Berdasarkan Fitur Warna Citra Kulit Pisang Menggunakan Metode Transformasi Ruang Warna HIS,” JUITA, Vol. 5, No. 1, hal. 15-21, 2017.
F. Mendoza dan J.M. Aguilera, “Application of Image Analysis for Classification of Ripening Bananas,” J. Food Sci., Vol. 69, No. 9, hal. 471-477, 2004.
G.A. Bere, E.N. Tamatjita, dan A. Kusumaningrum, “Klasifikasi untuk Menentukan Tingkat Kematangan Buah Pisang Sunpride,” Sem. Nas. Teknol. Inf. Kedirgantaraan (Proc. SENATIK), Vol. 2, hal. 109-113, 2016.
T.M. Siregar, L.A. Harahap, dan A. Rohanah, “Identifikasi Kematangan Buah Pisang (Musa Paradisiaca) dengan Teknik Jaringan Saraf Tiruan,” J. Rekayasa Pangan Pert, Vol. 3, No. 2, hal. 261-265, 2015.
(2018) “Mengenal Tingkat Kematangan Pisang,” [Online], http://balitbu.litbang.pertanian.go.id/eng/index.php/publikasi-mainmenu-47/leaflet/1232-mengenal-tingkat-kematangan-pisang, tanggal akses 23-Jun-2020.
R. Kosasih, A. Fahrurozi, dan D. Riminarsih, “Temu Kembali Citra dengan Menggunakan Momen Zernike dan City Block,” J. Ilmiah KOMPUTASI, Vol. 17, No. 3, hal. 169-174, 2018.
M. Tuceryan dan A.K. Jain, “Texture Analysis,” dalam Handbook of Pattern Recognition and Computer Vision, C.H. Chen, L.F. Pau, dan P.S.P. Wang, Eds., New Jersey, AS: World Scientific Publishing, 1998, hal. 207-248.
A.D. Kulkarni, Artificial Neural Networks for Image Understanding, New York, AS: Van Nostrand Reinhold, 1994.
P. Brodatz, Textures: A Photographic Album for Artists and Designers, New York, AS: Dover Publications, 1999.
A. Kadir dan A. Susanto, Teori dan Aplikasi Pengolahan Citra, Jogjakarta, Indonesia: Penerbit Andi, 2012.
Murni, R. Kosasih, A. Fahrurozi, T. Handhika, I. Sari, dan D.P. Lestari, “Travel Time Estimation for Destination In Bali Using kNN Regression Method with Tensorflow,” IOP Conf. Ser.: Mater. Sci. Eng., Vol. 854, No. 1, hal. 1-8, 2020.
L. Devroye, L. Gyorfi, A. Krzyzak, dan G. Lugosi, “On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates,” Ann. Statist, Vol. 22, No. 3, hal. 1371–1385, 1994.
S.B. Imandoust dan M. Bolandraftar, “Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background,” J. Eng. Res. App, Vol. 3, No. 5, hal. 605-610, 2013.
C. Domeniconi, J. Peng, dan D. Gunopulos, “Locally Adaptive Metric Nearest-Neighbor Classification,” IEEE Trans. Pattern Anal. Mach. Intell, Vol. 24, No. 9, hal. 1281–1285, 2002.
D.P. Lestari, R. Kosasih, T. Handhika, I. Sari, dan A. Fahrurozi, “Fire Hotspots Detection System on CCTV Videos Using You Only Look Once (YOLO) Method and Tiny YOLO Model for High Buildings Evacuation,” Proc. 2019 2nd Int. Conf. Comp. and Inf. Eng. (IC2IE), 2019, hal. 87–92.
R. Kosasih, “Kombinasi Metode Isomap dan KNN pada Image Processing untuk Pengenalan Wajah,” CESS (J. Comp. Eng. System Sci.), Vol. 5, No. 2, hal. 166-170, 2020.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.